An Introduction to Boron Neutron Therapy (BNCT): Current Status and Future Outlook
Authors
Abstract:
Boron neutron capture therapy (BNCT) is based on the nuclear reaction, such that B-10 irradiated with low-energy thermal neutrons produces alpha particles with high linear energy transfer and lithium-7. Clinically, BNCT is used primarily for treatment of high-grade glioma or brain metastases from melanoma and, more recently, head, neck and liver cancers. Since reactors have long been used to produce high intensity neutron beams, nuclear reactors have also been used to produce BNCT. Accelerators can also be used to generate quasi-thermal neutrons, but none of them are currently used for BNCT. Boron medications with low molecular weight used in clinic include sodium borocaptate (BSH) and a phenylalanine derivative called boronophenyl alanine (BPA). The main challenge in the development of boron tracers is the selective targeting to reach a sufficient concentration of boron (F 20 Ag / g tumor) so that the tumor receives a sufficient dose of radiation and normal tissues receive minimal radiation. Clinical trials of BNCT are being conducted or have been conducted in various countries. Most patients undergoing BNCT were patients with high-grade brain tumors. The patients underwent surgery for complete or partial removal of the tumor and then received BNCT at various time intervals after surgery. BNCT in combination with other treatments such as surgery, chemotherapy and external beam radiotherapy can also be used as an adjuvant therapy for treatment of other tumors. This concomitant use may lead to improvements in patient survival. According to clinical studies, BNCT is a targeted therapy with promising results and acceptable toxicity. Important issues in this treatment include the need for more selective and effective agents for boron delivery carriers, development of methods for estimating semi-quantitative amounts of boron content in the tumor before treatment, clinical progress of BNCT and the need for randomized clinical trials with known therapeutic efficacy. If these issues are addressed enough, BNCT can develop as a treatment method. Further research is needed to determine the role of BNCT in clinical medicine.
similar resources
Investigation the potential of Boron neutron capture therapy (BNCT) to treat the lung cancer
Introduction: Boron neutron capture therapy (BNCT) is recommended to treat the glioblastoma tumor. It is well known that neuron beams are more effective treatment than photon beams to treat hypoxia tumors due to interaction of neutron with nucleus and production of heavy particles such as 7Li and alpha particle. In this study to evaluate the suitability of BNCT for treating of ...
full textBoron neutron capture therapy of cancer: current status and future prospects.
BACKGROUND Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most...
full textشبیه سازی چشمه 7li(p,n)7be جهت استفاده در bnct (boron neutron capture therapy)
با توجه به اینکه امروزه بیماران بسیاری در سراسر جهان از سرطان رنج میبرند،دانشمندان در تلاشند روشهای درمانی جدیدتر و بهتری را کشف کنند .یکی از این روشها "درمان بوسیله گیراندازی نوترون توسط بور (bnct)" نام دارد که میتواند یکی از بهترین روشهای مفید و موثر و جایگزین در درمان سرطانهایی از نوع glioblastoma و melanoma نسبت به روشهای متداولی چون شیمی درمانی یا رادیوتراپی باشد.در این روش هدف انجام واکنش...
Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization -∗)
Boron Neutron Capture Therapy (BNCT) is known to be a promising and new cancer therapy which can kill tumor cells suppressing damage to normal tissues. Recently, accelerator based neutron sources (ABNS) for BNCT are under development especially in Japan. For characterization of the neutron field, we carried out the series study concerning thermal/epi-thermal neutron spectrometry especially for ...
full textAdaptive designs: current status, future outlook
The world of pharmaceutical statistics has taken adaptive designs to its heart at least in theory. However despite the very large number of methodological publications and presentations at conferences there are still very few examples of adaptive designs in the medical literature. In this talk I will discuss why this might be the case and will suggest areas where these approaches are likely to ...
full textBoron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: comparison of clinical results obtained with BNCT and conventional treatment.
The purpose of this study was to evaluate the clinical outcome of boron neutron capture therapy (BNCT) and conventional treatment in patients with newly diagnosed glioblastoma. Since 1998 we treated 23 newly-diagosed GBM patients with BNCT without any additional chemotherapy. Their median survival time was 19.5 months; the 2-, 3-, and 5-year survival rates were 31.8%, 22.7%, and 9.1%, respectiv...
full textMy Resources
Journal title
volume 24 issue 6
pages 610- 625
publication date 2021-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023