An Estimation of Required Rotational Torque to Operate Horizontal Directional Drilling Using Rock Engineering Systems
author
Abstract:
Horizontal directional drilling (HDD) is widely used in soil and rock engineering. In a variety of conditions, it is necessary to estimate the torque required for performing the reaming operation. Nevertheless, there is not presently a convenient method to accomplish this task. In this paper, to overcome this difficulty based on the basic concepts of rock engineering systems (RES), a model for the estimation of rotational torque to operate horizontal directional drilling is presented. The newly proposed model involves seven parameters (axial force on the cutter/bit (P), rotational speed (revolutions per minute) of the bit (N), the length of drill string in the borehole (L), the total angular change of the borehole (KL), the radius for the ith reaming operation (Di), the mud flow rate (W), and the mud viscosity (V)) effective on required rotational torque to operate horizontal directional drilling while keeping simplicity as well. The performance of the RES model is compared with multiple regression models. The estimation abilities offered using RES and multiple regression models were presented by using field data given from nine projects. The results indicate that the RES-based model predictor with a higher coefficient of determination (R2), a smaller mean square error (MSE), a lower root mean square error (RMSE), and a lower mean absolute percentage error (MAPE) performs better than the other models.Horizontal directional drilling (HDD) is widely used in soil and rock engineering. In a variety of conditions it is necessary to estimate the torque required for performing the reaming operation. Nevertheless, there is presently not a convenient method to accomplish this task. To overcome this difficult, in this paper, based on the basic concepts of a rock engineering systems (RES), a model for the estimation of rotational torque to operate horizontal directional drilling is presented. The newly proposed model involves 7 effective parameters (axial force on the cutter/bit (P), rotational speed (revolutions per minute) of the bit (N), the length of drill string in the borehole (L), the total angular change of the borehole (KL), the radius for the ith reaming operation (Di), the mud flow rate (W) and the mud viscosity (V)) on required rotational torque to operate horizontal directional drilling with keeping simplicity as well. The performance of the RES model is compared with multiple regression models. The estimation abilities offered using RES and multiple regression models were presented by using field data given from nine projects. The results indicate that the RES based model predictor with higher coefficient of determination (R2) and less mean square error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) performs better than the other models.
similar resources
A COMPARISON OF PERFORMANCE OF SEVERAL ARTIFICIAL INTELLIGENCE METHODS FOR ESTIMATION OF REQUIRED ROTATIONAL TORQUE TO OPERATE HORIZONTAL DIRECTIONAL DRILLING
Horizontal Directional Drilling (HDD) is extensively used in geothechnical engineering. In a variety of conditions it is essential to predict the torque required for performing the reaming operation. Nevertheless, there is presently not a convenient method to accomplish this task. To overcome this problem, in this research, the application of computational intelligence methods for data analysis...
full textBayesian prediction of rotational torque to operate horizontal drilling
Horizontal directional drilling is usually used in drilling engineering. In a variety of conditions, it is necessary to predict the torque required for performing the drilling operation. Nevertheless, there is presently not a convenient method available to accomplish this task. In order to overcome this difficulty, the current work aims at predicting the required rotational torque (RT) to opera...
full textDetermination and assessment of coal bed methane potential using rock engineering systems
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation for work but also makes it more expensive. The release of this gas to the air causes a further ...
full textHorizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistiv...
full textL1 Adaptive Control for Directional Drilling Systems
This paper considers downhole directional drilling systems in the presence of unexpected variations in steering force, input delays, measurement noise and measurement delays, and explores the application of L1 adaptive controller for the trajectory control problem. The Explicit Force, Finitely Sharp, Zero Mass (EFFSZM) model is used for the steering system, in which spatial delays, modeling ina...
full textA Hybrid Approach to Closed-loop Directional Drilling Control using Rotary Steerable Systems
This paper proposes the use of a hybrid approach to perform the trajectory control in the oil drilling industry using Rotary Steerable Systems (RSS). Two levels of automation are proposed, the attitude control (Level 1) regulating inclination and azimuth downhole and the outer loop (Level 2), that monitors the performance of the inner loop and controls the directional drilling commands issued t...
full textMy Resources
Journal title
volume 8 issue 1
pages 82- 96
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023