An Analytical Solution for Temperature Distribution and Thermal Strain of FGM Cylinders with Varying Thickness and Temperature-Dependent Properties Using Perturbation Technique
Authors
Abstract:
This research presents temperature distribution and thermal strain of functionally graded material cylinders with varying thickness and temperature-dependency properties that are subjected to heat fluxes in their inner and outer layers. The heterogeneous distribution of properties is modeled as a power function. Using first-order temperature theory and the energy method, governing equations are extracted. The system of governing differential equations is a system of nonlinear differential equations with variable coefficients, which are solved by using the analytical method of the matched asymptotic expansion of the perturbations technique. Results obtained from temperature distribution, heat flux, and thermal strain for different heterogeneous constants and temperature-dependency properties are discussed. They show that heterogeneity has a significant impact on the temperature field and thermal strain inside functionally graded cylinders. Moreover, it is observed that heterogeneity has no impact on the direction of heat flux vector inside the body; however, any changes in heterogeneity would change the magnitude of heat flux. The results obtained from the analytical method were compared with those of previous studies and FEM, which showed good agreement.
similar resources
Thermo-elastic Analysis of Functionally Graded Thick- Walled Cylinder with Novel Temperature – Dependent Material Properties using Perturbation Technique
In this work, thermo – elastic analysis for functionally graded thick – walled cylinder with temperature - dependent material properties at steady condition is carried out. The length of cylinder is infinite and loading is consist of internal hydrostatic pressure and temperature gradient. All of physical and mechanical properties expect the Poisson's ratio are considered as multiplied an expone...
full textPerformance, Thermal Stability and Optimum Design Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation
In this study, we analysed the thermal performance, thermal stability and optimum design analyses of a longitudinal, rectangular fin with temperature-dependent, thermal properties and internal heat generation under multi-boiling heat transfer using Haar wavelet collocation method. The effects of the key and controlling parameters on the thermal performance of the fin are investigated. The therm...
full textAsymmetric buckling analysis of the circular FGM plates with temperature-dependent properties under elastic medium
In this paper, Asymmetric buckling analysis of functionally graded (FG) Circular plates with temperature dependent property that subjected to the uniform radial compression and thermal loading is investigated. This plate is on an elastic medium that simulated by Winkler and Pasternak foundation. Mechanical properties of the plate are assumed to vary nonlinearly by temperature change. The equili...
full textAnalytical solution for Porous Fin with temperature-dependent heat generation via Homotopy perturbation method
In the present work, the solution of a non-linear the problem of porous fin with temperature dependent internal heat generation is obtained by means of the Homotopy Perturbation Method. The heat transfer through porous media is simulated using passage velocity from the DarcyâĂŹs model. The results were also compared with Numerical solution in order to verify the accuracy of the proposed method....
full textThermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method
In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...
full textThermomechanical Buckling of Temperature- dependent FGM Beams
Functionally graded materials, as a branch of new materials, have attracted increasing attention in recent years. A survey in the literature reveals the existence of wealth investigations on analysis of functionally graded material beams. Among them, Kang and Lee [1] presented explicit expressions for deflection and rotation of an FGM cantilever beam subjected to an end moment. Considering the ...
full textMy Resources
Journal title
volume 51 issue 1
pages 144- 156
publication date 2020-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023