An Analytical Solution for One-dimensional Horizontal Imbibition in a Cocurrent Flow
Authors
Abstract:
Cocurrent spontaneous imbibition (COCSI) of an aqueous phase into matrix blocks arising from capillary forces is an important mechanism for petroleum recovery from fractured petroleum reservoirs. In this work, the modeling of countercurrent imbibition is used to develop the appropriate scaling equations. Considering the imbibition process and the water and oil movement respectively as the wet phase and the non-wet phase in a block saturated by oil and surrounded by two vertical fractures full of water, a differential equation having partial and nonlinear derivatives is introduced using Darcy and mass balance equations. On the other hand, as there is no analytical solution for this equation, a new equation is introduced by considering the different intervals of the wet and non-wet phase viscosity and by selecting the best suitable functions for relative permeability and capillary pressure. Considering the boundary conditions governing the countercurrent imbibition, an analytical solution (equation) is developed. Finally, the developed equation is validated. The results of this research can be very important for a better understanding of the imbibition process and the water and oil movement in the fractured environments.
similar resources
Analytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder
An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are u...
full textanalytical solution for two-dimensional coupled thermoelastodynamics in a cylinder
an infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. the two-dimensional coupled thermoelastodynamic pdes are specified based on equations of motion and energy equation, which are uncoupled using nowacki potential functions. the laplace integral transform and bessel-fourier series are u...
full textNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
full textAn Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...
full textAn efficient analytical solution to transient heat conduction in a one-dimensional hollow composite cylinder
In this paper a novel analytical method is applied to the problem of transient heat conduction in a one-dimensional hollow composite cylinder with a timedependent boundary temperature. It is known that for such problems in general, the underlying eigenvalue and residue calculations pose a challenge in practice because of the computational requirements especially for a cylinder with many layers....
full textAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
full textMy Resources
Journal title
volume 8 issue 3
pages 40- 57
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023