An adaptive modified firefly algorithm to unit commitment problem for large-scale power systems
Authors
Abstract:
Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the additional choice of turning generators to be on or off. In this paper, in order to improve both the exploitation and exploration abilities of the firefly algorithm (FA), a new modification approach based on the mutation and crossover operators as well as an adaptive formulation is applied as an adaptive modified firefly algorithm (AMFA). In this paper, it is shown that AMFA can solve the UC problem in a better manner compared to the other meta-heuristic methods. The method is applied on some case studies, a typical 10-unit test system, 12, 17, 26, and 38 generating unit systems, and IEEE 118-bus test system, all with a 24-hour scheduling horizon. Comparison of the obtained results with the other methods addressed in the literature shows the effectiveness and fastness of the applied method.
similar resources
Solving the Unit Commitment Problem Using Modified Imperialistic Competition Algorithm
One of the most important problems for power system operation is unit commitment (UC), for which different constraints should be satisfied. UC is a nonlinear and large-scale problem; thus, using the evolutionary algorithms has been considered for solving the problem. In this paper, the solution of the UC problem was investigated using Modified Imperialistic Competition Algorithm (MICA). Simula...
full textDecomposition algorithm for large-scale two-stage unit-commitment
Everyday, electricity generation companies submit a generation schedule to the grid operator for the coming day; computing an optimal schedule is called the unit-commitment problem. Generation companies can also occasionally submit changes to the schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose a two-stage formulation of unit-commitment, wherein b...
full textA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
full textLarge-scale Unit Commitment under uncertainty
The Unit Commitment problem in energy management aims at finding the optimal productions schedule of a set of generation units while meeting various system-wide constraints. It has always been a large-scale, non-convex difficult problem, especially in view of the fact that operational requirements imply that it has to be solved in an unreasonably small time for its size. Recently, the ever incr...
full textModified Ant Colony Optimization Technique for Solving Unit Commitment Problem
Ant colony optimization (ACO) which is inspired by the natural behavior of ants in finding the shortest path to food is appropriate for solving the combinatorial optimization problems. Therefore, it is used to solve the unit commitment problem (UCP) and attain the minimum cost for scheduling thermal units in order to produce the demand load. In this paper modified ACO (MACO) is used to solve th...
full textSecurity-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation
Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...
full textMy Resources
Journal title
volume 9 issue 1
pages 68- 79
publication date 2021-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023