An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
Authors
Abstract:
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itself to the level of the autistic patient by reducing or increasing the challenges in the game via an intelligent agent during the play time. This task is accomplished by making more elements and reshaping them to a variety of real world shapes and redesigning their motions and speed. If autistic patient's communication level grows during the playtime, the challenges of game may become harder to make a dynamic procedure for evaluation. At each step or state, using fuzzy logic, the level of the player is estimated based on some attributes such as average of the distances between the fixed points gazed by the player, or number of the correct answers selected by the player divided by the number of the questioned objects. This paper offers the usage of dynamic AI difficulty system proposing a concept to enhance the conversation skills in autistic children. The proposed game is tested by participating of 3 autistic children. Each of them played the game in 5 turns. The results displays that the method is useful in the long-term.
similar resources
Using fuzzy logic for performance evaluation in reinforcement learning
Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that ...
full textan application of fuzzy logic for car insurance underwriting
در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...
an investigation into the impact of m-game-enhanced blended module of teaching and learning on iranian students english literacy skills and subskills learning
پژوهش حاضر با پیوند رسانه های قدیمی و جدید یاد دهی و یادگیری _طرح داستان و بازی های همراه ــ در یک پو دمان ترکیبی، در صدد قیاس شیوه ی یاد دهی و یادگیری مبتنی بر بازی مهارت های فرعی و اصلی واژگان، خواندن و نوشتار سواد انگلیسی با شیوه های مرسوم آن بود. به این منظور با کاربرد یک طرح سه گانه همراه با الگوی نظام آموزشی (تومی، 2010)، بازی های از پیش ساخته شده و بومی قابل عرضه از طریق ارتباطات سیّار (ب...
Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic Controllers
In this paper, we discuss situations arising with reinforcement learning algorithms, when the reinforcement is delayed. The decision to consider delayed reinforcement is typical in many applications, and we discuss some motivations for it. Then, we summarize Q-Learning, a popular algorithm to deal with delayed reinforcement, and its recent extensions to use it to learn fuzzy logic structures (F...
full textAdaptive fuzzy command acquisition with reinforcement learning
This paper proposes a four-layered adaptive fuzzy command acquisition network (AFCAN) for adaptively acquiring fuzzy command via interactions with the user or environment. It can catch the intended information from a sentence (command) given in natural language with fuzzy predicates. The intended information includes a meaningful semantic action and the fuzzy linguistic information of that acti...
full textMy Resources
Journal title
volume 7 issue 2
pages 321- 329
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023