An Adapted Non-dominated Sorting Algorithm (ANSA) for Solving Multi Objective Trip Distribution Problem

author

Abstract:

Trip distribution deals with estimation of trips distributed among origins and destinations and is one of the important stages in transportation planning. Since in the real world, trip distribution models often have more than one objective, multi-objective models are developed to cope with a set of conflict goals in this area. In a proposed method of adapted non-dominated sorting algorithm (ANSA) is introduced and applied on a multi objective trip distribution model. The objectives considered are: (1) maximization of the interactivity of the system, (2) minimization of the generalized costs and (3) minimization of the deviation from the observed year. in proposed ANSA using the sorting process of NSGA II and two proposed adapted operators a new adapted algorithm is introduced and applied to solve the three-objective model. To test the performance of the proposed algorithm, a set of Hong Kong data is used and results of applying proposed algorithm is compared to other models of the literature. The results show that proposed algorithms has better performance rather than the algorithms of the literature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

full text

Multi-objective optimization of discrete time–cost tradeoff problem in project networks using non-dominated sorting genetic algorithm

The time–cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate e...

full text

Multi-objective robust optimization model for social responsible closed-loop supply chain solved by non-dominated sorting genetic algorithm

In this study a supply chain network design model has been developed considering both forward and reverse flows through the supply chain. Total Cost, environmental factors such as CO2 emission, and social factors such as employment and fairness in providing job opportunities are considered in three separate objective functions. The model seeks to optimize the facility location proble...

full text

A Guided Search Non-dominated Sorting Genetic Algorithm for the Multi-Objective University Course Timetabling Problem

The university course timetabling problem is a typical combinatorial optimization problem. This paper tackles the multi-objective university course timetabling problem (MOUCTP) and proposes a guided search non-dominated sorting genetic algorithm to solve the MOUCTP. The proposed algorithm integrates a guided search technique, which uses a memory to store useful information extracted from previo...

full text

A New Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization 85 A New Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization

Multi-objective optimization (MO) is a highly demanding research topic because many realworld optimization problems consist of contradictory criteria or objectives. Considering these competing objectives concurrently, a multi-objective optimization problem (MOP) can be formulated as finding the best possible solutions that satisfy these objectives under different tradeoff situations. A family o...

full text

a dynamic multi-objective rail-car fleet sizing problem solved by non-dominated sorting genetic algorithm-ii

the aim of this paper is to present an efficient method for a rail freight car fleet sizing problem. this problem is modeled mathematically as a multi-period, dynamic and multi-objective, in which the rail freight wagons are assumed to be heterogeneous. demands for different wagons and all travel times are assumed deterministic. in order to increase the utilization of the available wagons in th...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  39- 53

publication date 2017-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023