Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

Authors

  • A. Badiei School of Chemistry, College of Science, University of Tehran, Tehran, Iran
  • A. Saadat Department of Chemistry, Yadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
  • L. Hajiaghababaei Department of Chemistry, Yadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
  • M. R. Ganjali Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
Abstract:

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spinel as a highly crystalline structure, before and after silica coating. The study also investigates the potentials of amino functionalized silica-coated Fe3O4 magnetic nanoparticles for extraction of Pb2+ and Cd2+ cations from aqueous solutions, where it has used flame atomic absorption spectrometry to determine ion concentration in both recovery and sample solutions. The optimum conditions of removal of Pb2+ and Cd2+ ions turn out to be pH= 4-8 with a stirring time of 20 minutes. The minimum amount of 3M nitric acid to strip ions from functionalized magnetic nanoparticles is 10 mL. The experimental data show the adsorption isotherms have been well described by Langmuir isotherm model, with the maximum capacity of the adsorbent being 1000.0 (± 1.4) μg, 454.5 (± 1.6) μg of Pb2+, and Cd2+ per each mg of functionalized magnetic nanoparticles, respectively. Finally, the proposed adsorbent is successfully applied to remove Pb2+ and Cd2+ ions in wastewater samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...

full text

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...

full text

Adsorptive Removal of Reactive Orange 122 from Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent

  In the present investigation, a novel adsorbent, ionic liquid modified magnetic nanoparticles (IL-Fe3O4), was successfully synthesized and characterized by FT-IR spectroscopy, ThermoGravimetric Analysis (TGA), XRD analysis, Scanning Electron Microscopy (SEM) and theory of Brunauer, Emmett, and Teller (BET) for remo...

full text

Removal of Reactive Red195 Synthetic Textile Dye using Polypyrrole-coated Magnetic Nanoparticles as an Efficient Adsorbent

Magnetic Fe3 O4 nanoparticles modified by polypyrrole (PPy@Fe3 O4 MNPs) was synthesized by chemical co-precipitation method and used as an adsorbent for removal of cationic dyes, Reactive Red195, from aqueous solutions. The resulting products are characterized by scanning electron microscope (SEM) and FT-IR. The effects of solution pH value, adsorbent amount, adsorption time and capacity of the...

full text

Novel Functionalized Polythiophene-Coated Fe3O4 Nanoparticles for Magnetic Solid-Phase Extraction of Phthalates

Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) was successfully synthesized and coated on the surface of Fe3O4 magnetic nanoparticles (MNPs). The nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, analyzer transmission electron microscopy (TEM) and vibrating sample magne...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 4

pages  847- 857

publication date 2019-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023