Allocation of Distributed Energy Resources for Microgrid Optimal Scheduling Considering Uncertainty

Authors

Abstract:

In this paper, a microgrid including a solar panel, a battery energy storage system and a diesel generator as the backup source are optimally is designed. The microgrid is considered as a part of a distribution network, that could be considered as local area. As microgrids can operate in grid-connected mode, the proposed algorithm investigates the minimization of the distribution network power loss, the amount of imported power from the utility and the curtailed load in case of emergency. The main purpose of the proposed algorithm is to minimize the overall investment, replacement and operation and maintenance costs for a microgrid. This article suggests a Lightning Attachment Procedure Optimization Algorithm to optimally design the problem of sitting and scheduling of microgrids in distribution systems. Both problems are solved simultaneously. The proposed approach is applied on 33-bus test system, and the results are discussed. Fast convergence, best global answer finding, and robustness are the characteristics of the proposed method, which are concluded from the results and discussion.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Determination of Optimal Allocation and Penetration Level of Distributed Energy Resources Considering Short Circuit Currents

The integration of Distributed Energy Resources (DER) in the distribution network has plenty of advantages if their allocation and Penetration Level (PL) are done appropriately. Hence, the challenge of finding the best allocation and PL of DERs in large distribution networks is an important but intricate problem. This paper proposes a novel methodology to simultaneously determine the optimal lo...

full text

Optimal Allocation of Distributed Generation in Microgrid by Considering Load Modeling

Recent increment in carbon emission due to the dependency on fossil fuels in power generation sector is a critical issue in the last decade. The motivation to Distributed Generation (DG) in order to catch low carbon networks is rising. This research seeks to experience DG existence in local energy servicing in microgrid structure. Optimal sizing and placement of DG units is followed by this pap...

full text

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel ...

full text

Dynamic Planning the Expansion of Electric Energy Distribution Systems Considering Distributed Generation Resources in the Presence of Power Demand Uncertainty

In this paper, a new strategy based on a dynamic (time-based) model is proposed for expansion planning of electrical energy distribution systems, taking into account distributed generation resources and advantage of the techno-economic approach. In addition to optimal placement and capacity, the proposed model is able to determine the timing of installation / reinforcement of expansion options....

full text

Optimal Scheduling of Microgrid with Multiple Distributed Resources Using Interval Optimization

In this paper, an optimal day-ahead scheduling problem is studied for a microgrid with multiple distributed resources. For the sake of coping with the prediction uncertainties of renewable energies and loads and taking advantage of the time-of-use price for buying/selling electricity, an interval-based optimization model for maximum profits is developed. To reduce the computational complexity i...

full text

Optimization of the Microgrid Scheduling with Considering Contingencies in an Uncertainty Environment

In this paper, a stochastic two-stage model is offered for optimization of the day-ahead scheduling of the microgrid. System uncertainties including dispatchable distributed generation and energy storage contingencies are considered in the stochastic model. For handling uncertainties, Monte Carlo simulation is employed for generation several scenarios and then a reduction method is used to decr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  1- 10

publication date 2019-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023