Allocation models for DMUs with negative data
Authors
Abstract:
The formulas of cost and allocative efficiencies of decision making units (DMUs) with positive data cannot be used for DMUs with negative data. On the other hand, these formulas are needed to analyze the productivity and performance of DMUs with negative data. To this end, this study introduces the cost and allocative efficiencies of DMUs with negative data and demonstrates that the introduced cost efficiency is equal to the product of allocative and range directional measure efficiencies. The study then intends to extend the definition of the above efficiencies to DMUs with negative data and different unit costs. Finally, two numerical examples are given to illustrate the proposed methods. JEL classification: C6, D2
similar resources
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDEA models for non-homogeneous DMUs with different input configurations
The data envelopment analysis (DEA) methodology is a benchmarking tool where it is generally assumed that decision making units (DMUs) constitute a homogeneous set; specifically, it is assumed that all DMUs have a common (input, output) bundle. In earlier work by the authors the issue of non-homogeneity on the output side was investigated. There we examined a set of steel fabrication plants whe...
full textData Envelopment Analysis with Nonhomogeneous DMUs
Data envelopment analysis (DEA), as originally proposed, is a methodology for evaluating the relative efficiencies of a set of homogeneous decision-making units (DMUs) in the sense that each uses the same input and output measures (in varying amounts from one DMU to another). In some situations, however, the assumption of homogeneity among DMUs may not apply. As an example, consider the case wh...
full textAn Algorithm for Resource Allocation through the Classification of DMUs
Data envelopment analysis (DEA) is a non-parametric method for assessing relative efficiency of decision-making units (DMUs). Every single decision-maker with the use of inputs produces outputs. These decision-making units will be defined by the production possibility set. Resource allocation to DMUs is one of the concerns of managers since managers can employ the results of this process to a...
full textComputing the efficiency interval of decision making units (DMUs) having interval inputs and outputs with the presence of negative data
The basic assumption in data envelopment analysis patterns (DEA) (such as the CCR andBCC models) is that the value of data related to the inputs and outputs is a precise andpositive number, but most of the time in real conditions of business, determining precisenumerical value is not possible in for some inputs or outputs. For this purpose, differentmodels have been proposed in DEA for imprecis...
full textEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
full textMy Resources
Journal title
volume 9 issue 1
pages -
publication date 2013-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023