Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

Authors: not saved
Abstract:

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of mesoporous silica surface with organic functional groups was confirmed by different characterization techniques including Fourier transform infrared spectroscopy, thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, N2 adsorption-desorption isotherms and Raman spectroscopy. The results have confirmed that SBA-15 was successfully functionalized with organic moieties. No change in the periodic structure of the SBA-15 silica support was observed throughout the grafting procedure. Surface area, pore size and pore volume decreased by attaching functional groups to the pore surface. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of SBA-15.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...

full text

Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...

full text

Facile modification of silica substrates provides a platform for direct-writing surface click chemistry.

Please click here: a facile two-step functionalization strategy for silicon oxide-based substrates generates a stable platform for surface click chemistry via direct writing. The suitability of the obtained substrates is proven by patterning with two different direct-writing techniques and three different molecules.

full text

modification of mesoporous silica sba-15 with different organic molecules to gain chemical sensors: a review

the recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. the fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...

full text

Modification of Silica surface by Titanium sol synthesis and characterization

Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed T...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  5- 12

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023