Adsorption of Gas Molecules on Graphene Doped with Mono and Dual Boron as Highly Sensitive Sensors and Catalysts
Authors
Abstract:
First-principle calculations have been investigated to study the adsorption of the molecules (SO2, CO, NH3, CO2, NO2, and NO) on the surface of mono boron (B) B-doped and dual B-doped graphene sheets to explore their potential applications as sensors. Our findings indicate that the adsorption of (CO and NH3) on B-doped graphene and (CO and SO2) on dual B-doped graphene are weak physisorption with adsorption energy between (0.128 to 0.810) eV. However, the adsorption of (CO2, NO2, SO2, and NO) on B-doped graphene and (CO2, NH3, NO and NO2) on dual B-doped graphene are strong chemisorption. The strong interaction of (CO2, NO2, SO2, and NO) on B-doped graphene and (CO2, NH3, NO and NO2) on dual B-doped graphene demonstrating that B-doped graphene and dual B-doped graphene could catalyse or activate, suggesting the possibility of B-doped graphene and dual B-doped graphene as a catalyst. Moreover, the energy gap of B-doped graphene and dual B-doped graphene is opened upon adsorption of (CO, CO2, NH3, NO, NO2 and SO2) in various ways. Our calculations demonstrate the feasibility of B-doped graphene may be a good sensor for (CO and NH3) and dual B-doped graphene could be a good sensor for (CO and SO2).
similar resources
Hydrogen adsorption on nitrogen and boron doped graphene.
Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption proc...
full textHighly NO2 sensitive caesium doped graphene oxide conductometric sensors
Here we report on the synthesis of caesium doped graphene oxide (GO-Cs) and its application to the development of a novel NO2 gas sensor. The GO, synthesized by oxidation of graphite through chemical treatment, was doped with Cs by thermal solid-state reaction. The samples, dispersed in DI water by sonication, have been drop-casted on standard interdigitated Pt electrodes. The response of both ...
full textStretchable and highly sensitive graphene-on-polymer strain sensors
The use of nanomaterials for strain sensors has attracted attention due to their unique electromechanical properties. However, nanomaterials have yet to overcome many technological obstacles and thus are not yet the preferred material for strain sensors. In this work, we investigated graphene woven fabrics (GWFs) for strain sensing. Different than graphene films, GWFs undergo significant change...
full textBoron doped graphene nanoribbons
Submitted for the MAR07 Meeting of The American Physical Society Boron doped graphene nanoribbons THIAGO MARTINS, Instituto de Fisica Universidade de Sao Paulo, HIROKI MIWA, Instituto de Fisica, Universidade Federal de Uberlandia, ANTONIO J.R. DA SILVA, A. FAZZIO, Instituto de Fisica Universidade de Sao Paulo — We will present a detailed study of the electronic, magnetic and transport propertie...
full textsingle-step synthesis of multi-component spirobarbiturates using ionic liquids and synthesis of substituted pyridine filled with catalysts supported on solid substrate
in this thesis, a better reaction conditions for the synthesis of spirobarbiturates catalyzed by task-specific ionic liquid (2-hydroxy-n-(2-hydroxyethyl)-n,n-dimethylethanaminium formate), calcium hypochlorite ca(ocl)2 or n-bromosuccinimide (nbs) in the presence of water at room temperature by ultrasonic technique is provided. the design and synthesis of spirocycles is a challenging task becaus...
15 صفحه اولOrigin of anomalous strain effects on the molecular adsorption on boron-doped graphene.
When compressive strain is applied to a single-layered material, the layer generally ripples along the third dimension to release the strain energy. In contrast, such a rippling effect is not favored when it is under tensile strain. Here, using first-principles density-functional calculations, we show that molecular adsorption on boron-doped graphene (BG) can be largely tuned by exploiting the ...
full textMy Resources
Journal title
volume 10 issue 2
pages 217- 229
publication date 2020-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023