Adsorption of Bis(1,4-dinitro toprop-2-yl) Nitramine on Boron Nitride Nano-cages Surfaces: DFT Studies
Authors
Abstract:
In this study Bis(1,4-dinitro toprop-2-yl) Nitramine, BNA, was attached to boron nitride nano- cages (B12N12). , thermodynamic parameters of BNA with B12N12 have been computed using one of the methods of density functional theory (B3LYP) In the temperature variety 300 to 400 K each 10 degree one times, were calculated. So these materials were geometrically optimized. After that thermodynamic parameters were calculated. Enthalpy values (ΔH), Specific heat capacity (Cv) and Gibbs free energy (ΔG) were computed for these reactions. Finally, the effect of nano structures on explosion properties and other chemical attributes of BNA were evaluated.
similar resources
THERMODYNAMIC STUDY OF LEVODOPA DRUG ADSORPTION ON ZIGZAG BORON NITRIDE NANOTUBES BY DENSITY FUNCTIONAL THEORY (DFT) METHOD
Background & Aims: The overall goal of utilizing nanotubes in drug delivery is to treat a disease effectively with minimum side effects and control the drug release rate. With common methods of taking the medication, such as orally and intravenously, the drug is distributed throughout the body, and the whole body is affected by the drug, and adverse side effects occur. With the development of n...
full textDetermination of thermodynamic parameters of produced materials from (ATTZ) with boron nitride nano-cages in different conditions of temperature, with DFT method
6-Amino-1,2,4-triazolo[4,3-b][1,2,4,5]tetrazine (ATTz)is an explosive material, that has been synthesized from the reaction of 3,6-diaminotetrazine , with nitrous acid and then sodium azide. In the simplest terms, an explosive is defined as a substance, which on initiation by friction, impact, shock, spark, flame, heating, or any simple application of an energy pulse, undergoes a rapid chemical...
full textAdsorption of proline amino acid on the surface of fullerene (C20) and boron nitride cage (B12N12): A comprehensive DFT study
In this study, the performance of fullerene (C20) and boron nitride cage (B12N12) as a sensing material for detection of proline was evaluated by density functional theory. For this purpose, the structures of proline, C20, B12N12 and the derived products from the proline adsorption on the surface of nanostructures were optimized geometrically. Then, IR and Frontier molecular orbital calculation...
full textHexagonal boron nitride on transition metal surfaces
We validate a computational setup based on density functional theory to investigate hexagonal boron nitride (h-BN) monolayers grown on different transition metals exposing hexagonal surfaces. An extended assessment of our approach for the characterization of the geometrical and electronic structure of such systems is performed. Due to the lattice mismatch with the substrate, the monolayers can ...
full textMolecular Simulation of Hydrogen Adsorption onto Single-Walled Carbon and Boron-Nitride Nano-Cones
In this paper, we have studied the hydrogen adsorption onto CNCs and BNNCs nano-cones using GCMC simulations. The effects of length and cone apex angle on adsorption property have been investigated. Our results show that with increasing the pressure and decreasing the cone length and cone apex angle except for CNC-300˚, the hydrogen adsorption onto the BNNCs and CNCs was increased. It was also ...
full textElectronic properties studies of Benzene under Boron Nitride nano ring field
In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12...
full textMy Resources
Journal title
volume 14 issue 2
pages 143- 148
publication date 2018-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023