Adsorption and Desorption Process of Chromium Ions Using Magnetic Iron Oxide Nanoparticles and Its Relevant Mechanism
Authors
Abstract:
In this study adsorption of Cr(VI) from aqueous solution by Fe3O4 nanoparticles was investigated. Desorption process and recovery of nanoparticles using different solutions were then carried out, and it was observed that NaOH (0.5M) can remove 90% of adsorbed chromium ions. Following the completion of adsorption/ desorption cycles, it was determined that nanoparticles have still had a high ability of chromium ions adsorption after 4 cycles. In addition, it was found that when iron oxide nanoparticles were washed with NaOH solution, the adsorption efficiency increases in the next cycle. FTIR spectra and zeta potential analysis, demonstrated the increased in surface positively charged of nanoparticles leads to increased electrostatic attraction forces between the iron oxide nanoparticles and chromium ions which finally resulted in adsorption increasing. So in this research, pretreatment of nanoparticles with NaOH solution modifies the surface of Fe3O4 nanoparticles by increasing surface positively charged mechanism and the adsorption efficiency has improved in the next cycle.
similar resources
synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants
we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.
15 صفحه اولpetrology and geochemistry of khar-bash (western shahrood) and its relation ship to iron mineralization
منطقه مورد مطالعه در 23 کیلومتری جنوب غرب شهرستاشاهرود قرار دارد که در نقشه 100000/1 شاهرود قرار گرفته است.ناحیه مورد مطالعه در تقسیمات ساختاری ایران بخشی از زون البرز شرقی است . در طی سنوزوئیک این زون به شدت تحت تأثیر فازهای کوهزایی آلپی قرار گرفته و فعالیت های آتشفشانی انوسن در قسمت های غربی آن دیده می شود . از نظر ترکیب سنگ شناسی منطقه مورد مطالعه متنوع و بیشتر شامل سنگ های رسوبی مانند : آ...
15 صفحه اولSynthesis of magnetic iron oxide nanoparticles and its application for simultaneous determination of hydrazine and hydroxylamine
In the present paper, the electrochemical properties of magnetic iron oxide nanoparticles (Fe2O3 and Fe3O4) as highly sensitive sensors for the simultaneous determination of hydrazine and hydroxylamine was described. The electrochemical behavior of hydrazine and hydroxylamine was investigated using cyclic voltammetry, chronoamperometry and differentia...
full textRemoval of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide
Introduction: The development of an effective method regarding chromium removal from the environment is of great importance. Therefore, the present study aimed to examiner magnetic nanoparticles coated with alumina modified by Cetyl Trimethyl Ammonium Bromide (CTAB) in the removal of Cr6+ through magnetic solid phase extraction method. Materials & Methods: At first, iron oxide nanoparticles ...
full textDNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection.
Iron oxide nanoparticles adsorb fluorescently labeled DNA oligonucleotides via the backbone phosphate and quench fluorescence. Arsenate displaces adsorbed DNA to increase fluorescence, allowing detection of arsenate down to 300 nM. This is a new way of using DNA: analyte recognition relies on its phosphate instead of the bases.
full textMechanism of DNA adsorption and desorption on graphene oxide.
Graphene oxide (GO) adsorbing a fluorophore-labeled single-stranded (ss) DNA serves as a sensor system because subsequent desorption of the adsorbed probe DNA from GO in the presence of complementary target DNA enhances the fluorescence. In this study, we investigated the interaction of single- and double-stranded (ds) DNAs with GO by using a fluorescently labeled DNA probe. Although GO is know...
full textMy Resources
Journal title
volume 14 issue 3
pages 31- 40
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023