Adjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons

Authors

  • Foozieh Sohrabi Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University
Abstract:

Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-polymeric grating. This structure is composed of metallic grating on the surface of PDMS with different concentration of embedded gold nanoparticles. By sweeping the incident angles, we have seen that the SPP, LSP and their coupling cause two gaps in reflection regime which are originated from SPP supported by thin film gold film and LSP supported by gold nanoparticles. The first gap is attributed to the patterned metallic film because it vanishes by increasing the nanoparticles which may destroy the pattern while the second gap can be formed by embedded nanoparticles because it becomes more considerable by raising the incubation time. Therefore, the drowning time of patterned samples (e.g. 24h, 48h, and 72h) in HAuCl4 plays the key role in adjustability of plasmonic bandgap. Notably, the interaction between SPP and LSP can be the origin of the shift in gap center from 300 to 550. To best of over knowledge, this study is the first study on the plasmonic band gap as a function of both SPP and LSP.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons.

One-way-propagating broadly tunable terahertz plasmonic waveguide at a subwavelength scale is proposed based on a metal-dielectric-semiconductor structure. Unlike other one-way plasmonic devices that are based on interference effects of surface plasmons, the proposed one-way device is based on nonreciprocal surface magneto plasmons under an external magnetic field. Theoretical and simulation re...

full text

Conformal surface plasmons propagating on ultrathin and flexible films.

Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibl...

full text

Experimental study of the interaction between localized and propagating surface plasmons.

The interaction between localized and propagating surface plasmons is investigated in a structure consisting of a two-dimensional periodic gold nanoparticle array, an SiO2 spacer, and a gold film. The resonance wavelengths of the two types of surface plasmons supported by the structure are tailored by changing the gold nanoparticle size and the array period. An anticrossing of the resonance pos...

full text

Au Gratings Fabricated by Interference Lithography for Experimental Study of Localized and Propagating Surface Plasmons

Optical properties of high-frequency Au gratings with a fixed period (296.6 ± 0.5 nm) and a variable modulation depth are studied using measurements of spectral and angular dependence of transmission and reflection of polarized light in order to build the dispersion curves of excited optical modes and to identify their types. It was shown that in gratings with small modulation depth only propag...

full text

Highly tunable propagating surface plasmons on supported silver nanowires.

Surface plasmons, the quanta of the collective oscillations of free electrons at metal surface, can be easily tuned by changing the surrounding dielectric materials, which is well known for metal nanoparticles and metal surfaces, but less is known for one-dimensional metal nanowires. Here, we find an extremely large tunability of surface plasmons on Ag nanowires with a beat period of the near-f...

full text

Localized surface plasmons in vibrating graphene nanodisks.

Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. M...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 2

pages  97- 102

publication date 2019-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023