About remainders in compactifications of paratopological groups
Authors
Abstract:
In this paper, we prove a dichotomy theorem for remainders in compactifications of paratopological groups: every remainder of a paratopological group $G$ is either Lindel"{o}f and meager or Baire. Furthermore, we give a negative answer to a question posed in [D. Basile and A. Bella, About remainders in compactifications of homogeneous spaces, Comment. Math. Univ. Carolin. 50 (2009), no. 4, 607--613]. Some questions about remainders in compactifications of paratopological groups are posed.
similar resources
Ordered Compactifications with Countable Remainders
Countable compactifications of topological spaces have been studied in [1], [5], [7], and [9]. In [7], Magill showed that a locally compact, T2 topological space X has a countable T2 compactification if and only if it has n-point T2 compactifications for every integer n ≥ 1. We generalize this theorem to T2-ordered compactifications of ordered topological spaces. Before starting our generalizat...
full textA remark on Remainders of homogeneous spaces in some compactifications
We prove that a remainder $Y$ of a non-locally compact rectifiable space $X$ is locally a $p$-space if and only if either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact, which improves two results by Arhangel'skii. We also show that if a non-locally compact rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal, then...
full textOn Compactifications with Path Connected Remainders
We prove that every separable and metrizable space admits a metrizable compactification with a remainder that is both path connected and locally path connected. This result answers a question of P. Simon. Connectedness and compactness are two fundamental topological properties. A natural question is whether a given space admits a connected (Hausdorff) compactification. This question has been st...
full textMenger remainders of topological groups
In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is σ-compact. Also, the existence of a Scheepers non-σ-compact remainder of a topological group follows from CH and yields a P -point, and hence is independent of Z...
full textCayley Compactifications of Abelian Groups
Following work of Rieffel [1], in this document we define the Cayley compactification of a discrete group G together with a set of generators S. We use algebraic methods in the general case to construct an explicit presentation of Cayley compactifications. In the particular case of Z, we use geometric methods to demonstrate a strong connection between the Cayley compactification and the polytop...
full textMy Resources
Journal title
volume 40 issue 3
pages 713- 719
publication date 2014-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023