A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting

author

  • Maedeh Sadeghpoor Department of Environmental Engineering, Environment and Energy, Science and Research Branc
Abstract:

Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. In order to evaluate the model, the root mean square error (RMSE), correlation coefficient (R) and coefficient of determination (R2) were used. Results demonstrated that WSVM with RMSE =3294.6, R =0.9211 and R2 =0.838 were more desired than the other model with RMSE =6719.7, R=0.589 and R2=0.327. Comparisons of these models revealed that, mean of error and error standard deviation for WSVM model were about 66% and 50% less than SVM model in test period.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

full text

Forecasting volatility based on wavelet support vector machine

One of the challenging problems in forecasting the conditional volatility of stock market returns is that general kernel functions in support vector machine (SVM) cannot capture the cluster feature of volatility accurately. While wavelet function yields features that describe of the volatility time series both at various locations and at varying time granularities, so this paper construct a mul...

full text

Monthly rainfall Forecasting using genetic programming and support vector machine

Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...

full text

Wavelet Support Vector Machine for Face Recognition

In this paper a tool system with wavelet support vector machine (WSVM) under dimension reduction for face recognition is proposed. Eigenfaces and fisherfaces are the major methods used to reduce the dimension of face images in the proposed face recognition tool system. At the same time, noise interference image cases, namely Gaussian noise, with no ears and no eyes are also considered in this p...

full text

assessing the impact of input variables preprocessing into support vector machine through gamma test method for suspended sediment volume prediction

this study aimed to examine the influence of pre-processing input variables by gamma test on performance of support vector machine in order to predict the suspended sediment amount of doiraj river, located in ilam province from 1994-2004. the flow discharge and rainfall were considered as the input variables and sediment discharge as the output model. also, the duration of the model training pe...

full text

A Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects

Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 27  issue 6

pages  855- 864

publication date 2014-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023