A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem

Authors

Abstract:

In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-interval, and technological coefficients and the quantities on the right side of the constraints were random variables with the specific distribution. Here we changed a Stochastic Interval-Valued Fractional Programming problem to an optimization problem with an interval-valued objective function, so that its boundaries are fractional functions. A numerical example was presented to demonstrate the effectiveness of the proposed method.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

A New Approach for Solving Interval Quadratic Programming Problem

This paper discusses an Interval Quadratic Programming (IQP) problem, where the constraints coefficients and the right-hand sides are represented by interval data. First, the focus is on a common method for solving Interval Linear Programming problem. Then the idea is extended to the IQP problem. Based on this method each IQP problem is reduced to two classical Quadratic Programming (QP) proble...

full text

E-model for Transportation Problem of Linear Stochastic Fractional Programming

This paper deals with the so-called transportation problem of linear stochastic fractional programming, and emphasizes the wide applicability of LSFP. The transportation problem, received this name because many of its applications involve in determining how to optimally transport goods. However, some of its applications (e.g., production scheduling) actually have nothing to do with transportati...

full text

Linear programming approach to solve interval-valued matrix games

Matrix game theory is concerned with how two players make decisions when they are faced with known exact payoffs. The aim of this paper is to develop a simple and an effective linear programming method for solving matrix games in which the payoffs are expressed with intervals. Because the payoffs of the matrix game are intervals, the value of the matrix game is an interval as well. Based on the...

full text

Dinkelbach Approach for Solving Interval-valued Multiobjective Fractional Programming Problems using Goal Programming

This paper presents an interval valued goal programming approach for solving multiobjective fractional programming problems. In the model formulation of the problem, the interval-valued system constraints are converted in to equivalent crisp system. The interval valued fractional objective goals are transformed into linear goals by employing the iterative parametric method which is an extension...

full text

Linear plus fractional multiobjective programming problem with homogeneous constraints using fuzzy approach

  We develop an algorithm for the solution of multiobjective linear plus fractional programming problem (MOL+FPP) when some of the constraints are homogeneous in nature. Using homogeneous constraints, first we construct a transformation matrix T which transforms the given problem into another MOL+FPP with fewer constraints. Then, a relationship between these two problems, ensuring that the solu...

full text

TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming

The objective of this paper is to present a technique for order preference by similarity to ideal solution (TOPSIS) algorithm to linear fractional bi-level multi-objective decision-making problem. TOPSIS is used to yield most appropriate alternative from a finite set of alternatives based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue None

pages  23- 31

publication date 2017-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023