A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

Authors

Abstract:

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefinite optimization relaxation in polynomial time.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

full text

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

full text

sdo relaxation approach to fractional quadratic minimization with one quadratic constraint

in this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. first we introduce a parametric equivalent of the problem. then a bisection and a generalized newton-based method algorithms are presented to solve it. in order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

full text

an interior point algorithm for solving convex quadratic semidefinite optimization problems using a new kernel function

in this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual interior point method (ipm) based on a new kernel function with a trigonometric barrier term. iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. although our proposed kernel function is neither a self-regular (sr) function nor logarithmic barrier ...

full text

Approximating Global Quadratic Optimization with Convex Quadratic Constraints

We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the bes...

full text

Bi-parametric convex quadratic optimization

In this paper we consider the Convex Quadratic Optimization problem with simultaneous perturbation in the right-hand-side of the constraints and the linear term of the objective function with different parameters. The regions with invariant optimal partitions are investigated as well as the behavior of the optimal value function on the regions. We show that identifying these regions can be done...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue None

pages  65- 71

publication date 2014-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023