A robust least squares fuzzy regression model based on kernel function

Authors

  • A. H. Khammar Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran
  • M. Arefi Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran
  • M. G. Akbari Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran
Abstract:

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance topresent the robust fuzzy model in the presence of different typesof outliers. Using some simulated data sets and some real datasets, the application of the proposed approach in modeling somecharacteristics with outliers, is studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

PEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION

Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...

full text

Robust linear least squares regression

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

full text

pedomodels fitting with fuzzy least squares regression

pedomodels have become a popular topic in soil science and environmentalresearch. they are predictive functions of certain soil properties based on other easily orcheaply measured properties. the common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. in modeling natural systems such as s...

full text

Robustness of reweighted Least Squares Kernel Based Regression

Kernel Based Regression (KBR) minimizes a convex risk over a possibly infinite dimensional reproducing kernel Hilbert space. Recently it was shown that KBR with a least squares loss function may have some undesirable properties from a robustness point of view: even very small amounts of outliers can dramatically affect the estimates. KBR with other loss functions is more robust, but often gives...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 4

pages  105- 119

publication date 2020-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023