A remark on Remainders of homogeneous spaces in some compactifications
Authors
Abstract:
We prove that a remainder $Y$ of a non-locally compact rectifiable space $X$ is locally a $p$-space if and only if either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact, which improves two results by Arhangel'skii. We also show that if a non-locally compact rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal, then both $X$ and $Y$ are separable and metrizable, which improves another Arhangel'skii's result. It is proved that if a non-locally compact paratopological group $G$ has a locally developable remainder $Y$, then either $G$ and $Y$ are separable and metrizable, or $G$ is a $sigma$-compact space with a countable network, which improves a result by Wang-He.
similar resources
About remainders in compactifications of paratopological groups
In this paper, we prove a dichotomy theorem for remainders in compactifications of paratopological groups: every remainder of a paratopological group $G$ is either Lindel"{o}f and meager or Baire. Furthermore, we give a negative answer to a question posed in [D. Basile and A. Bella, About remainders in compactifications of homogeneous spaces, Comment. Math. Univ. Caroli...
full textcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولOn Compactifications with Path Connected Remainders
We prove that every separable and metrizable space admits a metrizable compactification with a remainder that is both path connected and locally path connected. This result answers a question of P. Simon. Connectedness and compactness are two fundamental topological properties. A natural question is whether a given space admits a connected (Hausdorff) compactification. This question has been st...
full textOrdered Compactifications with Countable Remainders
Countable compactifications of topological spaces have been studied in [1], [5], [7], and [9]. In [7], Magill showed that a locally compact, T2 topological space X has a countable T2 compactification if and only if it has n-point T2 compactifications for every integer n ≥ 1. We generalize this theorem to T2-ordered compactifications of ordered topological spaces. Before starting our generalizat...
full textA note on the remainders of rectifiable spaces
In this paper, we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces, and how the character of the remainders affects the character and the size of a rectifiable space. Some results in [A. V. Arhangel'skii and J. Van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013...
full textsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولMy Resources
Journal title
volume 42 issue 6
pages 1523- 1534
publication date 2016-12-18
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023