A Reduction Method of Cogging Torque for Magnetic Gears
Authors
Abstract:
Nowadays, magnetic gears (MGs) have become an alternative choice for mechanical gears because of their low maintenance, improved durability, indirect contact between inner and outer rotors, no lubrication, and high efficiency. Generally, although these advantages, MGs suffer from inherent issues, mainly the cogging torque. Therefore, cogging torque mitigation has become an active research area. This paper proposed a new cogging torque mitigation approach based on the radial slit of the ferromagnetic pole pieces of MGs. In this method, different numbers and positions of slits are applied. The best results are gained through an even number of slits which shows promising results of cogging torque mitigation on the inner rotor with a small mitigation in the mean torque on both rotors. This work is done by using Simcenter and MATLAB software packages. The inner rotor’s cogging torque has mitigated to 81.9 %, while the outer rotor’s cogging torque is increased only by 2.75 %.
similar resources
Cogging Torque Control in Brushless Dc Motors
During the past five years, cogging torque in HDD spindle motors has decreased drastically as designers and manufacturers have developed a better understanding of the cogging phenomenon. This paper examines various methodologies of cogging torque reduction. Timing techniques such as dead zones and tooth notching, smoothing techniques such as sinusoidal magnetization, and geometric techniques su...
full textTechniques for Reduction of the Cogging Torque in Claw Pole Machines with SMC Cores
As one of the main parasitic parameters in permanent magnet (PM) synchronous machines (PMSMs), cogging torque is the main component of the torque ripple, which has always been the handicap in the high-performance, low-speed drive systems. Over the last two decades, various methods have been proposed to decrease the cogging torque in both radial-flux and axial-flux PMSMs. Among these methods, st...
full textDouble Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor
Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...
full textReduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems
In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging ...
full textA Comparative Analysis of Cogging Torque Reduction in BLDC Motor Using Bifurcation and Slot Opening Variation
The utility of PM-BLDC machines is extending its tentacles in industrial arena. The key features of BLDC machines include high starting torque density and extending speed range, though the cogging torque is a threat for its performance. Various techniques have been devised to minimize cogging torque, out of which two approaches Bifurcation and Slot Opening methods have been focused in this pape...
full textCogging Torque Reduction in PMSM Motor by Using Proposed New Auxiliary Winding
Performing fast and accurate methods for modeling the electrical machines has been the subject of several studies and many authors proposed different procedures to attain this aim. Beside the accuracy, the speed of the method is of great concern. On the other hand, the capability of the method to be changed according to the need is another important issue. Finite Element method provides relativ...
full textMy Resources
Journal title
volume 19 issue 2
pages 2752- 2752
publication date 2023-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023