A Radon-based Convolutional Neural Network for Medical Image Retrieval
Authors
Abstract:
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known technology in medical field, is utilized along with a deep network to propose a retrieval system for a highly imbalanced medical benchmark. The main contribution of this study is to propose a deep model which is trained on the Radon-based transformed input data. The experimental results show that applying this transformation as input to feed into a convolutional neural network, significantly increases the performance, compared with other retrieval systems. The proposed scheme clearly increases the retrieval performance, compared with almost all models which use Radon transformation to retrieve medical images.
similar resources
Medical image retrieval using deep convolutional neural network
With a widespread use of digital imaging data in hospitals, the size of medical image repositories is increasing rapidly. This causes difficulty in managing and querying these large databases leading to the need of content based medical image retrieval (CBMIR) systems. A major challenge in CBMIR systems is the semantic gap that exists between the low level visual information captured by imaging...
full textLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
full textEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
full textMinMax Radon Barcodes for Medical Image Retrieval
Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is “Radon barcodes” that employ binarized Rado...
full textConvolutional Neural Network Based Chart Image Classification
Charts are frequently embedded objects in digital documents and are used to convey a clear analysis of research results or commercial data trends. These charts are created through different means and may be represented by a variety of patterns such as column charts, line charts and pie charts. Chart recognition is as important as text recognition to automatically comprehend the knowledge within...
full textCompact descriptors for sketch-based image retrieval using a triplet loss convolutional neural network
We present an efficient representation for sketch based image retrieval (SBIR) derived from a triplet loss convolutional neural network (CNN). We treat SBIR as a cross-domain modelling problem, in which a depiction invariant embedding of sketch and photo data is learned by regression over a siamese CNN architecture with half-shared weights and modified triplet loss function. Uniquely, we demons...
full textMy Resources
Journal title
volume 31 issue 6
pages 910- 915
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023