A particle swarm optimization algorithm for minimization analysis of cost-sensitive attack graphs
Authors
Abstract:
To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also, a single countermeasure may prevent multiple exploits. We present a binary particle swarm optimization algorithm with a time-varying velocity clamping, called SwarmCAG-TVVC, for minimization analysis of cost-sensitive attack graphs. The aim is to find a critical set of countermeasures with minimum weight whose implementation causes the initial nodes and the goal nodes of the graph to be completely disconnected. This problem is in fact a constrained optimization problem. A repair method is used to convert the constrained optimization problem into an unconstrained one. A local search heuristic is used to improve the overall performance of the algorithm. We compare the performance of SwarmCAG-TVVC with a greedy algorithm GreedyCAG and a genetic algorithm GenNAG for minimization analysis of several large-scale cost-sensitive attack graphs. On average, the weight of a critical set of countermeasures found by SwarmCAG-TVVC is 6.15 percent less than the weight of a critical set of countermeasures found by GreedyCAG. Also, SwarmCAG-TVVC performs better than GenNAG in terms of convergence speed and accuracy. The results of the experiments show that SwarmCAG-TVVC can be successfully used for minimization analysis of large-scale cost-sensitive attack graphs.
similar resources
A Particle Swarm Optimization Algorithm for Minimization Analysis of Cost-Sensitive Attack Graphs
To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also,...
full textUsing Binary Particle Swarm Optimization for Minimization Analysis of Large-Scale Network Attack Graphs
The aim of the minimization analysis of network attack graphs (NAGs) is to nd a minimum critical set of exploits so that by preventing them an intruder cannot reach his goal using any attack scenario. This problem is, in fact, a constrained optimization problem. In this paper, a binary particle swarm optimization algorithm, called SwarmNAG, is presented for the minimization analysis of large-sc...
full textA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
full textFuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
full textSELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)
This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...
full textfuzzy particle swarm optimization algorithm for a supplier clustering problem
this paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. during recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. however, the nature of these decisions is usually complex and unstructured. in general, many quantitative and qualitative factors, such as quality, price, and fl...
full textMy Resources
Journal title
volume 2 issue 1
pages 13- 32
publication date 2010-01-26
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023