A Numerical Study of Flow and Heat Transfer Between Two Rotating Vertically Eccentric Spheres with Time- Dependent Angular Velocities
Authors
Abstract:
The transient motion and the heat transfer of a viscous incompressible flow contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities is numerically considered when the angular velocities are an arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer characteristics are presented for the various cases including exponential and sinusoidal angular velocities. Interesting effect of long delays in heat transfer of large portions of the fluid in the annulus is observed because of the angular velocities of the corresponding spheres. As the eccentricity increases and the gap between the spheres decreases, the coriolis forces and convection heat transfer effect in the narrower portion increase.
similar resources
Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube
Nanofluids are new heat transfer fluids, which improve thermal performance while reducing the size of systems. In this study, the numerical domain as a three-dimensional copper mini tube was simulated to study the characteristics of flow and heat transfer of CuO/H2O nanofluid, flowed horizontally within it. The selected model for this study was a two-phase mixture model. The results ...
full textNumerical Study of Flow and Heat Transfer in a Square Driven Cavity
A numerical approach called “SIMPLER” is used to investigate the flow and heat transfer characteristics in a square driven cavity. The two-dimensional incompressible Navier-Stokes equations were solved and the results are depicted as contour plots of stream function, vorticity, and total pressure for Reynolds numbers from 1 to 10000. At the higher values of Reynolds number, an inviscid core re...
full textNumerical study of fluid flow and heat transfer in a gas-tank water heater
Influence of a vent hood at the exit of exhaust flue gas and flue baffles in the firetube on the temperature and flow fields of a gas tank water heater, as well as thestructure and amount of heat transferred to the water tank has been studiednumerically using two-dimensional steady state finite element simulation.Observations show that without a vent hood, there is a downward gas flow in theflu...
full textMHD Two-Fluid Flow and Heat Transfer between Two Inclined Parallel Plates in a Rotating System
Two-phase magnetohydrodynamic convective flow of electrically conducting fluid through an inclined channel is studied under the action of a constant transverse magnetic field in a rotating system. The fluids in the two phases are steady, incompressible, laminar, immiscible, and electrically conducting, having different densities, viscosities, and thermal and electrical conductivities. The trans...
full textHeat Transfer in a Column Packed With Spheres
The purpose of the study is to investigate average and local surface heat transfer coefficients in a cylinder packed with spheres. Here the term «local» applies to a single sphere within the bed. Averages are derived from the sixteen different spheres that were instrumented and distributed throughout the bed. The experimental technique consisted of introducing a step - wise change in the temper...
full textPressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers
This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...
full textMy Resources
Journal title
volume 21 issue 3
pages 295- 318
publication date 2008-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023