A Numerical Method For Solving Ricatti Differential Equations

Authors

Abstract:

By adding a suitable real function on both sides of the quadratic Riccati differential equation, we propose a weighted type of Adams-Bashforth rules for solving it, in which moments are used instead of the constant coefficients of Adams-Bashforth rules. Numerical results reveal that the proposed method is efficient and can be applied for other nonlinear problems.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

full text

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

full text

A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.

full text

A NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS

In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...

full text

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

full text

A numerical method for solving uncertain differential equations

Uncertain differential equation is a type of differential equation driven by canonical process. In this paper, a concept of α-path to uncertain differential equation is first introduced, which is a type of deterministic function that solves an associate ordinary differential equation. Then, a numerical method is designed for solving uncertain differential equations, which essentially solves eac...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue None

pages  51- 71

publication date 2017-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023