A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon

author

Abstract:

This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include interactions between species may restricts to pairwise interactions. Three mathematical models of invasions of species in more complex settings that include interactions between species are introduced. For one of these models in general form a computational approach based on finite difference and RBF collocation method is established. To numerical solution first we discretize the proposed equations by using the forward difference rule for time derivatives and the well known Crank-Nicolson scheme for other terms between successive time levels. To verify the ability and robustness of the numerical approach, two test problems are investigated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a paradigm shift away from method-wise teaching to strategy-wise teaching: an investigation of reconstructive strategy versus communicative strategy

چکیده: هدف اصلی این مطالعه ی توصیفی تحقیقی در حقیقت تلاشی پساروش-گرا به منظور رسیدن به نتیجه ای منطقی در انتخاب مناسبترین راهکار آموزشی بر گرفته از چارچوب راهبردی مطرح شده توسط والدمر مارتن بوده که به بهترین شکل سازگار و مناسب با سامانه ی آموزشی ایران باشد. از این رو، دو راهکار آموزشی، راهکار ارتباطی و راهکار بازساختی، برای تحقیق و بررسی انتخاب شدند. صریحاً اینکه، در راستای هدف اصلی این پژوهش، ر...

15 صفحه اول

A Numerical Study of Cauchy Reaction-Diffusion Equation

Abstract: In this paper, new algorithm of homotopy analysis method is successfully applied to obtain the approximate analytical solutions of the Cauchy reaction-diffusion equation. Reaction-diffusion equations have special importance in engineering and sciences and constitute a good model for many systems in various fields. Application of new algorithm of homotopy analysis method to this proble...

full text

A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo

In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...

full text

A Blowup Problem of Reaction Diffusion Equation Related to the Diffusion Induced Blowup Phenomenon

This work studies nonnegative solutions for the Cauchy, Neumann, and Dirichlet problems of the logistic type equation ut = ∆u+ μu p − a(x)u with p, q > 1, μ > 0. The finite time blowup results for nonnegative solutions under various restrictions on a(x), p, q, μ are presented. Applying the results allows one to construct some reaction diffusion systems with

full text

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  98- 110

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023