A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

Authors

Abstract:

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics and hydromagnetic stability. Convergence and error bound estimation of the method are discussed. The comparison of results with exact solution and existing numerical methods such as Quintic B-spline collocation method and Galerkin method with Quintic B-splines as basis functions shown that the HWCM is a powerful numerical method for solution of above mentioned problems.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Solution of Fifth Order Boundary Value Problems by Collocation Method with Sixth Order B-Splines

Collocation method with sixth degree B-splines as basis functions has been developed to solve a fifth order special case boundary value problem. To get an accurate solution by the collocation method with sixth degree B-splines, the original sixth degree B-splines are redefined into a new set of basis functions which in number match with the number of collocation points. The method is tested for...

full text

Haar Wavelet Quasilinearization Approach for Solving Nonlinear Boundary Value Problems

Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the function which represents solution of boundary value problems. Through this ana...

full text

A Collocation Method for Linear Fourth Order Boundary Value Problems

We propose and analyze a numerical method for solving fourth order differential equations modelling two point boundary value problems. The scheme is based on B-splines collocation. The error analysis is carried out and convergence rates are derived.

full text

Haar Wavelet Method to Solve Volterra Integral Equations with Weakly Singular Kernel by Collocation Method

Volterra integral equations arise in many problems pertaining to mathematical physics like heat conduction problems. Several numerical methods for approximating the solution of Volterra integral equations are known [1-10]. This paper is focused on the solution of Volterra integral equations of the second kind with weakly singular kernel via Haar function by taking advantage of the nice properti...

full text

SPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS

The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.  

full text

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  61- 75

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023