A novel technique for a class of singular boundary value problems
Authors
Abstract:
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time optimization problem to a discrete time optimization problem. By solving the discrete time optimization problem, we find discrete approximations for the solutions of the main singular boundary value problem. Also, by Lagrange interpolation we obtain a continuous approximation for the solution. The efficiency and the reliability of the proposed approach are tested by solving three practical singular boundary value problems.
similar resources
Applying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems
In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...
full textPositive Solutions for a Class of Singular Boundary-value Problems
Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions.
full textPositive Solutions for a Class of Singular Boundary-value Problems
This paper concerns the existence and multiplicity of positive solutions for Sturm-Liouville boundary-value problems. We use fixed point theorems and the sub-super solutions method to two solutions to the problem studied. Introduction Consider the boundary-value problem Lu = λf(t, u), 0 < t < 1 αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, (0.1) where Lu = −(ru′)′ + qu, r, q ∈ C[0, 1] with r > 0, q ≥ ...
full textOn the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
full textSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
full textExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
full textMy Resources
Journal title
volume 6 issue 1
pages 40- 52
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023