A Novel Noise Reduction Method Based on Subspace Division

Authors

  • Amin Zehtabian Department of Computer and Electrical Engineering Babol Noshirvani University of Technology, Babol, Iran
  • Behzad Zehtabian Department of Computer and Electrical Engineering Babol Noshirvani University of Technology, Babol, Iran
Abstract:

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is used to reduce the effect of space intersections on altering the structure of important information in the signal. On the other hand, since singular vectors are the span bases of the matrix, reducing the effect of noise from the singular vectors and using them in reproducing the matrix, enhances the information embedded in the matrix. The proposed technique utilizes the Savitzky-Golay low-pass filter for noise attenuation from the singular vectors. The enhanced matrix is finally transformed to a timeseries signal. The obtained results in this research indicate that the proposed method excels the other existing time-domain approaches in noise reduction.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a novel noise reduction method based on subspace division

this article presents a new subspace-based technique for reducing the noise ofsignals in time-series. in the proposed approach, the signal is initially representedas a data matrix. then using singular value decomposition (svd), noisy datamatrix is divided into signal subspace and noise subspace. in this subspace division,each derivative of the singular values with respect to rank order is used ...

full text

Using a novel method for random noise reduction of seismic records

Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...

full text

Subspace-based technique for speckle noise reduction in ultrasound images

BACKGROUND AND PURPOSE Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despe...

full text

Experimental comparison of signal subspace based noise reduction methods

In this paper, the signal subspace approach for non-parametric speech enhancement is considered. Several algorithms have been proposed in the literature but only partly analyzed. Here, the different algorithms are compared, and the emphasis is put onto the limiting factors and practical behavior of the estimators. Experimental results show that the signal subspace approach may lead to a signifi...

full text

An Adaptive Subspace Filter for Noise Reduction

In this paper, we present a novel structure for adap-tive noise ltering based on subspace methods. Our approach requires no eigenvalue or singular value decomposition to obtain the principal signal components. In addition, only the noisy signal, and no reference signal is needed. A modiied RLS adaptive algorithm is proposed which approximately performs the principal component analysis of the no...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  53- 59

publication date 2010-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023