A note on hyper-Zagreb index of graph operations
Authors
Abstract:
In this paper, the Hyper - Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These corrects some errors in G. H. Shirdel et al.[11].
similar resources
a note on hyper-zagreb index of graph operations
in this paper, the hyper - zagreb index of the cartesian product, composition and corona product of graphs are computed. these corrects some errors in g. h. shirdel et al.[11].
full textThe Hyper-Zagreb Index of Graph Operations
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
full textthe hyper-zagreb index of graph operations
let g be a simple connected graph. the first and second zagreb indices have been introducedas vv(g)(v)2 m1(g) degg and m2(g) uve(g)degg(u)degg(v) , respectively,where degg v(degg u) is the degree of vertex v (u) . in this paper, we define a newdistance-based named hyperzagreb as e uv e(g) .(v))2 hm(g) (degg(u) degg inthis paper, the hyperzagreb index of the cartesian product...
full textThe Hyper-Zagreb Index of Four Operations on Graphs
The hyper-Zagreb index of a connected graph G, denoted by HM(G), is defined as HM(G) = ∑ uv∈E(G) [dG(u) + dG(v)] where dG(z) is the degree of a vertex z in G. In this paper, we study the hyper-Zagreb index of four operations on graphs.
full textThe hyper-Wiener index of graph operations
Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...
full textA Note on Revised Szeged Index of Graph Operations
Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper...
full textMy Resources
Journal title
volume 7 issue 1
pages 89- 92
publication date 2016-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023