A Note on Absolute Central Automorphisms of Finite $p$-Groups
author
Abstract:
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
similar resources
On equality of absolute central and class preserving automorphisms of finite $p$-groups
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...
full textA NOTE ON AUTOMORPHISMS OF FINITE p-GROUPS
Let G be a finite non-cyclic p-group of order at least p3. If G has an abelian maximal subgroup, or if G has an elementary abelian centre with CG(Z(Φ(G))) 6= Φ(G), then |G| divides |Aut(G)|.
full textON AUTOMORPHISMS OF SOME FINITE p-GROUPS
We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Autc(G) = Inn(G), where Autc(G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Autc(G) ∼= Autc(H). Finally we study class preserving automorphisms of groups o...
full textON A CONJECTURE ON AUTOMORPHISMS OF FINITE p-GROUPS
Let G be a finite p-group such that xZ(G) ⊆ x for all x ∈ G−Z(G), where x denotes the conjugacy class of x in G. Then |G| divides |Aut(G)|, where Aut(G) is the group of all automorphisms of G.
full textON ABSOLUTE CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENTWISE
Let G be a finite p-group and let Aut_l(G) be the group of absolute central automorphisms of G. In this paper we give necessary and sufficient condition on G such that each absolute central automorphism of G fixes the centre element-wise. Also we classify all groups of orders p^3 and p^4 whose absolute central automorphisms fix the centre element-wise.
full textOuter Automorphisms of Locally Finite p-Groups∗
Every group is an outer automorphism group of a locally finite p-group. This extends an earlier result [3] about countable outer automorphism groups. It is also in sharp contrast to results concerning the existence of outer automorphisms of nilpotent groups in [6, 13, 14].
full textMy Resources
Journal title
volume 17 issue 2
pages 97- 108
publication date 2022-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023