A New WordNet Enriched Content-Collaborative Recommender System

Authors

  • Keshavarz, Ahmad 5Department of Electrical Engineering, Persian Gulf University, Bushehr, IR
  • Mirzarezaee, Mitra Department of Computer Engineering, Science and Research Branch, Islamic Azad University
  • Parvin, Hamid Department of Computer Engineering, Islamic Azad University of Noorabad Mamasani, Fars, Iran
Abstract:

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommender systems. Recently, many researchers have proved that using content models along with these systems can improve the efficacy of hybrid recommender systems. In this paper, we propose to use a new hybrid recommender system where we use a WordNet to improve its performance. This WordNet is also automatically generated and improved during its generation. Our ontology creates a knowledge base of concepts and their relations. This WordNet is used in the content collaborator section in our hybrid recommender system. We improve our ontological structure via a content filtering technique. Our method also benefits from a clustering task in its collaborative section. Indeed, we use a passive clustering task to improve the time complexity of our hybrid recommender system. Although this is a hybrid method, it consists of two separate sections. These two sections work together during learning. Our hybrid recommender system incorporates a basic memory-based approach and a basic model-based approach in such a way that it is as accurate as a memory-based approach and as scalable as a model-based approach. Our hybrid recommender system is assessed by a well-known data set. The empirical results indicate that our hybrid recommender system is superior to the state of the art methods. Also, our hybrid recommender system is more accurate and scalable compared to the recommender systems, which are simply memory-based (KNN) or basic model-based. The empirical results also confirm that our hybrid recommender system is superior to the state of the art methods in terms of the consumed time. While this method is more accurate than model-based methods, it is also faster than memory-based methods. However, this method is not much weaker in terms of accuracy than memory-based methods, and not much weaker in terms of speed than model-based methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Collaborative and Content-based Recommender System for Social Bookmarking Website

This study proposes a new recommender system based on the collaborative folksonomy. The purpose of the proposed system is to recommend Internet resources (such as books, articles, documents, pictures, audio and video) to users. The proposed method includes four steps: creating the user profile based on the tags, grouping the similar users into clusters using an agglomerative hierarchical cluste...

full text

A New Collaborative Recommender System Addressing Three Problems

With the development of e-commerce and information access, a large amount of information can be found online, which makes a good recommendation service to be urgently necessary. While many collaborative recommender systems (CRS) have succeeded in capturing the similarity among users or items based on ratings, there are still some challenges for them to be a more efficient RS. In this paper, we ...

full text

TV Content Recommender System

The plethora of content available to the consumer has become overwhelming. Increasing amounts of information are being disseminated through terrestrial broadcast, satellite, and cable leading to an information overload. Common modes of searching for TV programs currently in existence include: TV-guide, PreVue channel and rudimentary search tools available through satellite dish TV programming s...

full text

Collaborative Document Monitoring via a Recommender System

In this paper we take a second look at agents that help users monitor URLs. More specifically, we present a system which enables the collaborative evaluation of URL content changes via a recommender agent. The recommender agent on its own helps users share URLs of interest within a community. A document monitoring agent is coupled with the recommender agent to alert members of a community when ...

full text

CCR - A Content-Collaborative Reciprocal Recommender for Online Dating

We present a new recommender system for online dating. Using a large dataset from a major online dating website, we first show that similar people, as defined by a set of personal attributes, like and dislike similar people and are liked and disliked by similar people. This analysis provides the foundation for our Content-Collaborative Reciprocal (CCR) recommender approach. The content-based pa...

full text

Discerning Relevant Model Features in a Content-based Collaborative Recommender System

Recommender systems suggest users information items they may be interested in. User profiles or usage data are compared with some reference characteristics, which may belong to the items (content-based approach), or to other users in the same context (collaborative filtering approach). These items are usually presented as a ranking, where the more relevant an item is predicted to be for a user,...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 18  issue 4

pages  89- 124

publication date 2022-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023