A New Shearlet Framework for Image Denoising

author

  • E. Ehsaeyan Department of Electrical Engineering, Sirjan University of Technology, Sirjan, Iran.
Abstract:

Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising and destroys the flatness of homogenous area. Wavelets are not very effective in dealing with multidimensional signals containing distributed discontinuities such as edges. This paper develops an effective shearlet-based denoising method with a strong ability to localize distributed discontinuities to overcome this limitation. The approach introduced here presents two major contributions: (a) Shearlet Transform is designed to get more directional subbands which helps to capture the anisotropic information of the image; (b) coefficients are divided into low frequency and high frequency subband. Then, the low frequency band is refined by Wiener filter and the high-pass bands are denoised via NeighShrink model. Our framework outperforms the wavelet transform denoising by %7.34 in terms of PSNR (peak signal-to-noise ratio) and %13.42 in terms of SSIM (Structural Similarity Index) for ‘Lena’ image. Our results in standard images show the good performance of this algorithm, and prove that the algorithm proposed is robust to noise.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Image Denoising Using Wavelet and Shearlet Transform

Image plays an important role in this present technological world which further leads to progress in multimedia communication, various research field related to image processing, etc. The images are corrupted due to various noises which occur in nature and poor performance of electronic devices. The various types of noise patterns observed in the image are Gaussian, salt and pepper, speckle etc...

full text

Region Classification Based Image Denoising Using Shearlet and Wavelet Transforms

This paper proposes a neural network based region classification technique that classifies regions in an image into two classes: textures and homogenous regions. The classification is based on training a neural network with statistical parameters belonging to the regions of interest. An application of this classification method is applied in image denoising by applying different transforms to t...

full text

Image Denoising Using Shearlet Transform and Nonlinear Diffusion

In this paper, we present a new image denoising method for removing Gaussian noise from corrupted image by using shearlet transform and nonlinear diffusion. The image is decomposed by the shearlet transform to obtain the shearlet coefficients in each subband; then a diffusion scheme based on statistical property of shearlet coefficients is used to shrink noisy shearlet coefficients. The test sh...

full text

An Improved Image Denoising Algorithm based on Shearlet

In allusion to remove Racian noise while lessen the loss of details as low as possible, this paper proposed an filter algorithm which comprehensive utilize Multi-Objective Genetic Algorithm (MOGA) and Shearlet transform based on a Multi-scale Geometric Analysis (MGA) theory. First, it performs a wavelet multi-scale decomposition of image. Then, it builds target function in MOGA by several evalu...

full text

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

full text

An Efficient Curvelet Framework for Denoising Images

Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 2

pages  97- 104

publication date 2016-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023