A New Method for Computation of Axial Flux Permanent Magnet Synchronous Machine Inductances under Saturated Condition
Authors
Abstract:
Accurate computing of the saturated inductances of Permanent Magnet Synchronous Machine (PMSM) is very important during the design process. In this paper, a new method is presented based on the B-H characteristic of the stator material and unsaturated inductances formulations. This method is used to calculate the saturated inductances of the axial flux PMSM. The synchronous inductance and all of the leakage inductances can be calculated using this method. Two motors with different slot/pole combinations are selected as the case studies. The effectiveness and accuracy of the method is confirmed by 3D Finite Element Analysis (FEA). This method can be extended to other types of electric machines comprising multi-phase winding in their armature such as induction motors and other types of synchronous motors.
similar resources
Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
full textoptimal design of axial flux permanent magnet synchronous motor for electric vehicle applications using gaand fem
axial flux permanent magnet (afpm) machines are attractive candidates for electric vehicles (evs) applications due to their axial compact structure, high efficiency, high power and torque density. this paper presents general design characteristics of afpm machines. moreover, torque density of the machine which is selected as main objective function, is enhanced by using genetic algorithm (ga) a...
full textA New Subdomain Method for Performances Computation in Interior Permanent-Magnet (IPM) Machines
In this research work, an improved two-dimensional semi-analytical subdomain based method for performance computation in IPM machine considering infinite-/finite-magnetic material permeability in pseudo-Cartesian coordinates by using hyperbolic functions has been presented. In the developed technique, all subdomains are divided into periodic or non-periodic regions with homogeneous or non-homog...
full textA Novel High-Performance Field-Weakening Control for Axial Flux-Switching Permanent-Magnet Motor
By combining the field-weakening control principle of a new axial flux-switching permanent-magnet motor (AFFSSPM) with the space vector pulse width modulation (SVPWM) and maximum torque per voltage (MTPV) control principle, a novel field-weakening control strategy for AFFSSPM is proposed in this paper. In the first stage of the field-weakening, the difference between the reference voltage updat...
full textA Synchronous/Permanent Magnet Hybrid AC Machine
In this paper, a synchronous/permanent magnet hybrid(SynPM) machine is presented. It is shown that the machine has good power density and efficiency, and that the machine has true field regulation capability. The principle of operation, finite element analysis and simulation of this new machine are investigated in the paper.
full textA New Hunting Control Method for Permanent Magnet Hysteresis Motors
Hunting is a flutter associated with the synchronous speed that gives rise to the gyro drifting errors and may cause objectionable time-displacement errors in video head wheel drives and other precision scanning systems. In this paper, dynamic characteristics of permanent Magnet hysteresis motors are presented and hunting is explained. New damping techniques have been developed using optimi...
full textMy Resources
Journal title
volume 6 issue 2
pages 208- 217
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023