A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
author
Abstract:
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in the Caputo sense. We propose a new finite difference method for solving time fractional diffu- sion equation. In our method firstly, we transform the Caputo derivative into Riemann-Liovill derivative. The stability and convergence of this method are investigated by a Fourier analysis. We show that this method is uncondition- ally stable and convergent with the convergence order O( 2+h2), where t and h are time and space steps respectively. Finally, a numerical example is given that confirms our theoretical analysis and the behavior of error is examined to verify the order of convergence.
similar resources
The new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
full textAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
full textThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
full textFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
full textCrank-nicolson Finite Difference Method for Solving Time-fractional Diffusion Equation
In this paper, we develop the Crank-Nicolson finite difference method (C-N-FDM) to solve the linear time-fractional diffusion equation, formulated with Caputo’s fractional derivative. Special attention is given to study the stability of the proposed method which is introduced by means of a recently proposed procedure akin to the standard Von-Neumann stable analysis. Some numerical examples are ...
full textFinite difference Schemes for Variable-Order Time fractional Diffusion equation
Variable-order fractional diffusion equation model is a recently developed and promising approach to characterize time-dependent or concentration-dependent anomalous diffusion, or diffusion process in inhomogeneous porous media. To further study the properties of variableorder time fractional subdiffusion equation models, the efficient numerical schemes are urgently needed. This paper investiga...
full textMy Resources
Journal title
volume 8 issue 1 (WINTER)
pages 1- 14
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023