A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
Authors
Abstract:
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant literature and the references here). In this paper we study the closed Newton-Cotes formulae and we write them as symplectic multilayer structures. Based on the closed Newton-Cotes formulae, we also develop trigonometrically-fitted symplectic methods. An error analysis for the onedimensional Schrodinger equation of the new developed methods and a comparison with previous developed methods is also given. We apply the new symplectic schemes to the well-known radial Schr¨odinger equation in order to investigate the efficiency of the proposed method to these type of problems.
similar resources
High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems
The connection between closed Newton-Cotes, trigonometrically-fitted differential methods and symplectic integrators is investigated in this paper. It is known from the literature that several one step symplectic integrators have been obtained based on symplectic geometry. However, the investigation of multistep symplectic integrators is very poor. Zhu et al. (1996) presented the well known ope...
full textTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
full texttrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
in this paper, we present a new two-step trigonometrically fitted symmetric obrechkoff method. the method is based on the symmetric two-step obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve ivps with periodic solutions such as orbital problems. we compare the new method to some recently constructed optimized methods from the literature. the numeri...
full textthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولExplicit sixth-order Bessel and Neumann fitted method for the numerical solution of the Schrödinger equation
An explicit sixth-algebraic-order method for the numerical solution of the Schrödinger equation for a neutral particle is developed. The new formula considered contains free parameters that are defined in order to integrate the spherical Bessel and Neumann functions exactly. Based on the new method and a method of Simos we obtained a variable-step algorithm. The results produced, based on the n...
full textP-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation
Many simulation algorithms (chemical reaction systems, differential systems arising from the modeling of transient behavior in the process industries and etc.) contain the numerical solution of systems of differential equations. For the efficient solution of the above mentioned problems, linear multistep methods or Runge-Kutta technique are used. For the simulation of chemical procedures the ra...
full textMy Resources
Journal title
volume 13 issue None
pages 111- 129
publication date 2018-05
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023