A New Control Strategy for Controlling Isolated Microgrid
Authors
Abstract:
Microgrid control in isolated mode is a highly important subject area. In the present paper, a new method is used for controlling the isolated microgrids. This method was used based on the classification of the microgrids into two groups, namely fast-dynamic (battery and flywheel) and slow-dynamic (diesel generator, electrolyzer, fuel cell). For the microgrid components with fast dynamics, a separate controller has been used. Also, another separate controller has been used for those components of the microgrid that are characterized by slow dynamics. This method was simulated in MATLAB software. A fractional-order proportional-integral-differential (FOPID) controller optimized by the grey wolf optimizer (GWO) algorithm was used as the proposed controller in the new control strategy. The proposed method was compared with the FOPID controller that has been optimized by particle swarm optimization (PSO) algorithm and genetic algorithm (GA). Besides, it was compared with the common proportional-integral-differential (PID) controller, the coefficients of which have been obtained using the Ziegler-Nichols method, and proportional-integral (PI) controller, the coefficients of which have been obtained using the neural network (NN) method. The obtained results indicated the improved response speed, improved transient-state performance, and improved steady-state performance of the proposed method compared to the previous ones.
similar resources
A Novel Hybrid Droop-Isochronous Control Strategy for Microgrid Management
The droop control strategy is the most common approach for microgrids control but its application is limited due to frequency deviation following a load change. Complementary control strategy has then been proposed to solve the problem using a communication network. However, under this strategy, regular loads profile produces a continuous change of output power of all distributed generators (DG...
full textA Control Strategy for Flywheel Energy Storage System for Frequency Stability Improvement in Islanded Microgrid
The Micro-Grid (MG) stability is a significant issue that must be maintained in all operational modes. Usually, two control strategies can be applied to MG; V/f control and PQ control strategies. MGs with V/f control strategy should have some Distributed Generators (DGs) which have fast responses versus load changes. The Flywheel Energy Storage System (FESS) has this characteristic. The FESS, w...
full textA New Seamless Transfer Control Strategy of the Microgrid
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it...
full textA New Control Strategy for Voltage Restoration and Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid
Low voltage microgrids including sensitive loads often face unbalanced load conditions. Therefore, a compensation procedure should be carried out in order to balance and restore sensitive load’s voltage. In this paper, an effective voltage control strategy has been proposed for the autonomous operation of microgrids, under unbalanced load conditions. The proposed strategy balances single-phase...
full textDelay Dependent H∞ Based Robust Control Strategy for Unified Power Quality Conditioner in a Microgrid
This paper proposes a novel robust control scheme based on delay-dependent H∞for unified power quality conditioner (UPQC) in a microgrid under the influence of the delay and parameter uncertainties. A new UPQC model considering the effects of the delay and parameter uncertainties is established. Then, the H∞ controller is designed based on the cone complementarity linearization (CCL) algorithm....
full textHierarchical MAS Based Control Strategy for Microgrid
Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how ...
full textMy Resources
Journal title
volume 10 issue 4
pages 0- 0
publication date 2020-12
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023