A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model
Authors
Abstract:
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging. Weather radars are capable of detecting and displaying storm-related turbulence as well as precipitation in a relatively wide area. This capability can improve the quality of the wind forecast. In this paper, a method is presented and implemented to forecast the probability of strong wind in the next five hours based on the Hidden Markov Model (HMM). The method is expanded to find out the forecast of wind turbine output power and reliability as well. Achieved results show that about 67% of strong winds are correctly forecasted
similar resources
mortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولwind farm impact on generation adequacy in power systems
در سال های اخیر به دلیل افزایش دمای متوسط کره زمین، بشر به دنبال روش های جایگزین برای تامین توان الکتریکی مورد نیاز خود بوده و همچنین در اکثر نقاط جهان سوزاندن سوخت های فسیلی در نیروگاه های حرارتی به عنوان مهم ترین روش تولید توان الکتریکی مطرح بوده است. به دلیل توجه به مسایل زیست محیطی، استفاده از منابع انرژی تجدید پذیر در سال های اخیر شدت یافته است. نیروگاه های بادی به عنوان یک منبع تولید توان...
15 صفحه اولImproving Data-based Wind Turbine Using Measured Data Foggy Method
The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...
full textWind Turbine Power Curve Modeling Using Parametric Approach
Abstract: In recent years, due to the limitation of fossil fuels and the environmental Impact of using these fuels, focusing on renewable energy sources has increased significantly. In developed countries, using clean energy such as wind power has been considered as an alternative source. Monitoring the performance of wind turbines and controlling their output power quality is one of the import...
full textA Hidden Markov Model-Based Approach to Sequential Data Clustering
Clustering of sequential or temporal data is more challenging than traditional clustering as dynamic observations should be processed rather than static measures. This paper proposes a Hidden Markov Model (HMM)-based technique suitable for clustering of data sequences. The main aspect of the work is the use of a probabilistic model-based approach using HMM to derive new proximity distances, in ...
full texta new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولMy Resources
Journal title
volume 15 issue None
pages 59- 69
publication date 2022-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023