A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Authors

  • M S Helfroush
  • M Sepaskhah
Abstract:

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need for automated and robust artifact attenuation removal and lesion border detection.Methods: A method for segmentation of dermoscopy images is proposed based on active contour. To this end, at first, a simple method for hair pixels is restored and a new scheme for shading detection is proposed. Then, particle swarm optimization (PSO) algorithm is applied to select the best coefficients for converting RGB to gray level. The obtained gray level image is then used as input for multi Otsu method which provides initial contour for border detection using active contour. Finally, Chan and Vese active contour is used for final lesion border detection.Results: The method is tested on a total of 145 dermoscopic images: 79 cases with benign lesion and 75 cases with melanoma lesion. Mean accuracy, sensitivity and specificity were obtained 94%, 78.5% and 99%, respectively.Conclusion: Results reveal that the proposed method segments the lesion from dermoscopy images accurately.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Lesion Border Detection in Dermoscopy Images

BACKGROUND Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized analysis of dermoscopy images has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders. METHODS In th...

full text

A simple algorithm for automated skin lesion border detection

Prompt diagnosis is the most reliable solution for an effective treatment of melanoma. There is an ongoing research for providing computer-aided imaging tools in order to support the early detection and diagnosis of malignant melanomas. The first step towards producing such a diagnosis system is the automated and accurate boundary detection of skin lesion. Therefore, the present study introduce...

full text

Unsupervised border detection in dermoscopy images.

BACKGROUND As a result of the advances in skin imaging technology and the development of suitable image processing techniques, during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of skin cancer. Automated border detection is one of the most important steps in this procedure as the accuracy of the subsequent steps crucially depends on the acc...

full text

A Hybrid Computational Intelligence Algorithm for Automatic Skin Lesion Segmentation in Dermoscopy Images

In this paper, an unsupervised approach based on Evolving Vector Quantization (EVQ) is presented for enhancing dermatology images for skin lesion segmentation. Vector Quantization (VQ) as a famous compression technique has been widely used in image signal compression and speech signal compression. The EVQ algorithm extends the Linde, Buzo, and Gray (LBG) Vector Quantization method with Particle...

full text

Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods

BACKGROUND Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. In many cases, the lesion can be roughly separated from the backgr...

full text

Border detection in dermoscopy images using statistical region merging.

BACKGROUND As a result of advances in skin imaging technology and the development of suitable image processing techniques, during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of melanoma. Automated border detection is one of the most important steps in this procedure, because the accuracy of the subsequent steps crucially depends on it. ME...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  -

publication date 2018-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023