A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
Authors
Abstract:
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated flowing through two similar dimension membranes. Different hydrostatic pressures are applied and the flow rates of water and ions are calculated through molecular dynamics simulations. Consequently, according to conductance of water per each nanotube, per nanosecond, it is perceived that at lower pressures (below 150 MPa) the Si-C nanotubes seem to be more applicable, while higher hydrostatic pressures make carbon nanotube membranes more suitable for water desalination.
similar resources
a molecular dynamics simulation of water transport through c and sic nanotubes: application for desalination
in this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. in order that studies on different types of nanotubes be comparable, the chiral vectors of c and si-c nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
full textsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells
This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.
full textMolecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
full textAccelerating water transport through a charged SWCNT: a molecular dynamics simulation.
The properties of a nanotube, such as the hydrophobicity and charge of the surface, can significantly affect water transport behavior. However, our knowledge of the effects of charge density, dipole orientation, frequency of flipping, and movement behavior on water flow through carbon nanotubes (CNTs) is far from adequate. This study is aimed at gaining insight into the transport of single-file...
full textMy Resources
Journal title
volume 2 issue 3
pages 151- 157
publication date 2012-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023