A Modified Grey Wolf Optimizer by Individual Best Memory and Penalty Factor for Sonar and Radar Dataset Classification

Authors

  • محمد تقوی کارشناس ارشد مهندسی برق دانشگاه صنعتی نوشیروانی بابل
Abstract:

Meta-heuristic Algorithms (MA) are widely accepted as excellent ways to solve a variety of optimization problems in recent decades. Grey Wolf Optimization (GWO) is a novel Meta-heuristic Algorithm (MA) that has been generated a great deal of research interest due to its advantages such as simple implementation and powerful exploitation. This study proposes a novel GWO-based MA and two extra features called Individual Best Memory (IBM) and Penalty Factor (PF) to train Feed-forward Neural Network (FNN) for the classification of Sonar and Radar datasets. Besides, FNN is accompanied by Feature Selection (FS) using GWO. Experiments were done on Sonar and Radar datasets obtained from the University of California, Irvin (UCI) to evaluate the performance of the proposed MA; the results demonstrated the proposed MA is markedly better than GWO in terms of classification accuracy, avoiding local optima stagnation, and convergence speed. This framework can be applied to naval navigation systems or atmospheric research.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Grey Wolf Optimizer

This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...

full text

Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by th...

full text

Distributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer

This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...

full text

Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine

With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to...

full text

Experienced Grey Wolf Optimizer through Reinforcement Learning and Neural Networks

In this paper, a variant of Grey Wolf Optimizer (GWO) that uses reinforcement learning principles combined with neural networks to enhance the performance is proposed. The aim is to overcome, by reinforced learning, the common challenges of setting the right parameters for the algorithm. In GWO, a single parameter is used to control the exploration/exploitation rate which influences the perform...

full text

ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting

The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  133- 146

publication date 2019-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023