A MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
Authors
Abstract:
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on the velocity field and displacement of particles. The most exclusive feature of the method is exactly removing artificial viscosity of the formulations and representing good compatibility with other reasonable numerical methods without any rigorous numerical fractures or tensile instabilities while MCSPH dose not use any extra modifications. Two types of problems involve elastic-plastic deformations and shock waves are presented here to demonstrate the abilities of MCSPH in simulation of such problems and its capability of shock capturing. The problems that are proposed here are low and high velocity impacts between aluminum projectiles and semi infinite aluminum beams. Elastic-perfectly plastic model is chosen for constitutive model of the aluminum and the results of simulations are compared with other reasonable studies in these cases.
similar resources
on the practicality and effectiveness of a personalized eclectic method incorporated into iranian high school efl syllabus
همگام با سرعت در حال رشد خلاقیت و نوآوری های آموزش زبان به ویژه ظهور روش ارتباطی آموزش زبان? بسیاری از مدارس زبان با بازاندیشی آموزش و پرورش خود? برای گنجاندن فعالیت های ارتباطی، وزمینه ی شخصی سازی شده به شیوه های سنتی خود به روز رسانی شده اند. با این حال، مدارس ایرانی در این زمینه آهسته پیش رفته اند. از این رو، هدف عمده ی پژوهش حاضر برداشتن یک گام در پر کردن شکاف بین نظریه های آموزشی نو ظهور و...
15 صفحه اولNumerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method
In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...
full textModified smoothed particle hydrodynamics method and its application to transient problems
A modification to the smoothed particle hydrodynamics method is proposed that improves the accuracy of the approximation especially at points near the boundary of the domain. The modified method is used to study one-dimensional wave propagation and twodimensional transient heat conduction problems.
full textFluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey
This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied to a variety of different areas in science, computer graphics and engineering. It has been established as a popular technique for fluid based simulations, and has been extended to succe...
full textSimulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)
Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...
full textSearch algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method
We first present a nonuniform box search algorithm with length of each side of the square box dependent on the local smoothing length, and show that it can save up to 70% CPU time as compared to the uniform box search algorithm. This is especially relevant for transient problems in which, if we enlarge the sides of boxes, we can apply the search algorithm fewer times during the solution process...
full textMy Resources
Journal title
volume 25 issue 1
pages 45- 58
publication date 2012-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023