A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

author

Abstract:

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to the desired eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. These examples show an interesting phenomenon in the procedure: The diagonal matrix that converges to eigenvalues gives them in decreasing order in the sense of absolute value. Appendices A to C provide Matlab codes that implement the proposed algorithms. They show that the proposed algorithms are very easy to program.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a mathematically simple method based on de nition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

in this paper, a fundamentally new method, based on the de nition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. some examples are provided to show the accuracy and reliability of the proposed method. it is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to t...

full text

On the eigenvalues of some matrices based on vertex degree

The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.

full text

Eigenvalues-based LSB steganalysis

So far, various components of image characteristics have been used for steganalysis, including the histogram characteristic function, adjacent colors distribution, and sample pair analysis. However, some certain steganography methods have been proposed that can thwart some analysis approaches through managing the embedding patterns. In this regard, the present paper is intended to introduce a n...

full text

Eigenvalues and Pseudo-eigenvalues of Toeplitz Matrices

The eigenvalues of a nonhermitian Toeplitz matrix A are usually highly sensitive to perturbations, having condition numbers that increase exponentially with the dimension N. An equivalent statement is that the resolvent ( ZZ A)’ of a Toeplitz matrix may be much larger in norm than the eigenvalues alone would suggest-exponentially large as a function of N, even when z is far from the spectrum. B...

full text

A Generalized Inverse Iteration for Computing Simple Eigenvalues of Nonsymmetric Matrices

Technische Universit at Dresden Herausgeber: Der Rektor A Generalized Inverse Iteration for Computing Simple Eigenvalues of Nonsymmetric Matrices Hubert Schwetlick and Ralf L osche IOKOMO-07-97 December 1997 Preprint-Reihe IOKOMO der DFG-Forschergruppe Identi kation und Optimierung komplexer Modelle auf der Basis analytischer Sensitivitatsberechnungen an der Technischen Universitat Dresden ...

full text

Eigenvalues for Equivariant Matrices

An equivariant matrix A commutes with a group of permutation matrices. Such matrices often arise in numerical applications where the computational domain exhibits geometrical symmetries, for instance triangles, cubes, or icosahedra. The theory for block diagonalizing equivariant matrices via the Generalized Fourier Transform (GFT) is reviewed and applied to eigenvalue computations. For dense ma...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 01  issue 02

pages  71- 81

publication date 2012-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023