A Coupled Random Fixed Point Result With Application in Polish Spaces

Authors

  • Hasanen Abuel-Magd Hammad Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt.
Abstract:

In this paper, we present a new concept of random contraction and prove a coupled random fixed point theorem under this condition which generalizes stochastic Banach contraction principle. Finally, we apply our contraction to obtain a solution of random nonlinear integral equations and we present a numerical example.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Coupled fixed point on ordered cone metric spaces with application in integral equations

Our theorems are on ordered cone metric spaces which are not necessarily normal. In the end, we describe the application of the main results in the integral equation.Although Du in [W‎. ‎S‎. ‎Du‎, ‎A note on cone metric fixed point theory and its equivalence‎, ‎Nonlinear Analysis‎, ‎72(2010) 2259-2261.]‎, ‎showed that the fixed point results in the setting of cone...

full text

Coupled coincidence point and common coupled fixed point theorems in complex valued metric spaces

In this paper, we introduce the concept of a w-compatible mappings and utilize the same to discuss the ideas of coupled coincidence point and coupled point of coincidence for nonlinear contractive mappings in the context of complex valued metric spaces besides proving existence theorems which are following by corresponding unique coupled common fixed point theorems for such mappings. Some illus...

full text

Random fixed point theorems with an application to a random nonlinear integral equation

In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.

full text

Coupled fixed point results for $alpha$-admissible Mizoguchi-Takahashi contractions in $b$-metric spaces with applications

The aim of this paper is to  establish some fixed point theorems for $alpha$-admissible Mizoguchi-Takahashi contractive mappings defined on a ${b}$-metric space which generalize the results of Gordji and Ramezani cite{Roshan6}. As a result, we obtain some coupled fixed point theorems which generalize the results of '{C}iri'{c} {et al.} cite{Ciric3}. We also present  an application in order to i...

full text

Some results on coupled fixed point and fixed point theory in partially ordered probabilistic like (quasi) Menger spaces

In this paper, we define the concept of probabilistic like Menger (probabilistic like quasi Menger) space (briefly, PLM-space (PLqM-space)). We present some coupled fixed point and fixed point results for certain contraction type maps in partially order PLM-spaces (PLqM- spaces).

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 1

pages  99- 113

publication date 2018-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023