A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Authors

  • Momeny, Mohammad Department of Computer Engineering, Faculty of Engineering, Yazd University
Abstract:

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise changes the output values of a system, just as the value recorded in the output differs from its actual value. In the process of image encoding and transmission, when the image is passed through noisy transmission channel, the impulse noise with positive and negative pulses causes the image to be destroyed. A positive pulse in the form of white and a negative pulse in the form of black affect the image. The purpose of this paper is to introduce dynamic pooling which make the convolutional neural network stronger against the noisy image. The proposed method classifies noise images by weighting the values in the dynamic pooling region. In this research, a new method for modifying the pooling operator is presented in order to increase the accuracy of convolutional neural network in noise image classification. To remove noise in the dynamic pooling layer, it is sufficient to prevent the noise pixel processing by the dynamic pooling operator. Preventing noise pixel processing in the dynamic pooling layer prevents selecting the amount of noise to be applied to subsequent CNN layers. This increases the accuracy of the classification. There is a possibility of destroying the pixels of the entire window in the image. Due to the fact that the dynamic pooling operator is repeated several times in the layers of the convolutional neural network, the proposed method for merging noise pixels can be used many times. In the proposed dynamic pooling layer, pixels with a probability of p being destroyed by noise are not included in the dynamic pooling operation with the same probability. In other words, the participation of a pixel in the dynamic pooling layer depends on the health of that pixel value. If a pixel is likely to be noisy, it will not be processed in the proposed dynamic pooling layer with the same probability. To compare the proposed method, the trained VGG-Net model with medium and slow architecture has been used. Five convolutional layers and three fully connected layers are the components of the proposed model. The proposed method with 26% error for images corrupted with impulse noise with a density of 5% has a better performance than the compared methods. Increased efficiency and speed of convolutional neural network based on dynamic pooling layer modification for noise image classification is seen in the simulation results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

full text

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

full text

Deep Convolutional Neural Networks and Noisy Images

The presence of noise represent a relevant issue in image feature extraction and classification. In deep learning, representation is learned directly from the data and, therefore, the classification model is influenced by the quality of the input. However, the ability of deep convolutional neural networks to deal with images that have a different quality when compare to those used to train the ...

full text

Convolutional Neural Network Based Chart Image Classification

Charts are frequently embedded objects in digital documents and are used to convey a clear analysis of research results or commercial data trends. These charts are created through different means and may be represented by a variety of patterns such as column charts, line charts and pie charts. Chart recognition is as important as text recognition to automatically comprehend the knowledge within...

full text

Classification of Moving Vehicles Based on Convolutional Neural Network

This paper suggests a method of applying convolutional neural network (CNN) to realtime moving-vehicle image dataset, and experiments its performances. Compared to Support vector machine (SVM), the CNN led to a 13.59% increase in performance.

full text

Breast Cancer Classification in Histopathological Images using Convolutional Neural Network

Computer based analysis is one of the suggested means that can assist oncologists in the detection and diagnosis of breast cancer. On the other hand, deep learning has been promoted as one of the hottest research directions very recently in the general imaging literature, thanks to its high capability in detection and recognition tasks. Yet, it has not been adequately suited to the problem of b...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 4

pages  139- 154

publication date 2021-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023