A characterization of simple $K_4$-groups of type $L_2(q)$ and their automorphism groups

Authors

  • D. Yu Department of Mathematics and Chongqing Key Laboratory of GGTA‎, ‎Chongqing University of Arts and Sciences‎, ‎Chongqing 402160‎, ‎P.R‎. ‎China.
  • G. Chen School of Mathematics and Statistics‎, ‎Southwest University‎, ‎Chongqing 400715‎, ‎P.R‎. ‎China.
  • J. Li Department of Mathematics and Chongqing Key Laboratory of GGTA‎, ‎Chongqing University of Arts and Sciences‎, ‎Chongqing 402160‎, ‎P.R‎. ‎China.
  • W. Shi Department of Mathematics and Chongqing Key Laboratory of GGTA‎, ‎Chongqing University of Arts and Sciences‎, ‎Chongqing 402160‎, ‎P.R‎. ‎China.
Abstract:

In this paper, it is proved that all simple $K_4$-groups of type $L_2(q)$ can be characterized by their maximum element orders together with their orders. Furthermore, the automorphism groups of simple $K_4$-groups of type $L_2(q)$ are also considered.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a characterization of simple $k_4$-groups of type $l_2(q)$ and their automorphism groups

in this paper, it is proved that all simple $k_4$-groups of type $l_2(q)$ can be characterized by their maximum element orders together with their orders. furthermore, the automorphism groups of simple $k_4$-groups of type $l_2(q)$ are also considered.

full text

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

AUTOMORPHISM GROUP OF GROUPS OF ORDER pqr

H"{o}lder in 1893 characterized all groups of order $pqr$ where  $p>q>r$ are prime numbers. In this paper,  by using new presentations of these groups, we compute their full automorphism group.

full text

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

full text

Automorphism Groups of Some Affine and Finite Type Artin Groups

We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type Ãn−1 and C̃n−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 2

pages  501- 514

publication date 2017-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023