A characterization of orthogonality preserving operators
Authors
Abstract:
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogonality preserving operator.
similar resources
Operators Reversing Orthogonality and Characterization of Inner Product Spaces
In this short paper we answer a question posed by Chmieliński in [Adv. Oper. Theory 1 (2016), no. 1, 8–14]. Namely, we prove that among normed spaces of dimension greater than two, only inner product spaces admit nonzero linear operators which reverse the Birkhoff orthogonality.
full textOrthogonality preserving mappings on inner product C* -modules
Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...
full textNested Krylov Methods and Preserving the Orthogonality
SUMMARY Recently the GMRESR inner-outer iteration scheme for the solution of linear systems of equations has been proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski 1] and Saad (FGMRES) 10]. The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a ne...
full textUnitary Operators Preserving Wavelets
We characterize a special class of unitary operators that preserve orthonormal wavelets. In the process we also prove that symmetric wavelet sets cover the real line.
full textgl(A) and Differential Operators Preserving Polynomials
We discuss a certain generalization of gl,,(C), and show how it is connected to polynomial differential operators that leave the polynomial space ~,~ invariant. Mathematics Subject Classifications (1991). 17B66, 17B56, 17B35.
full textAdditive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
full textMy Resources
Journal title
volume 43 issue 7
pages 2495- 2505
publication date 2017-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023