A Boundary Meshless Method for Neumann Problem

author

  • k Maleknejad Iran University of Science and Technology
Abstract:

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is described for solving this integral equation. Error analysis of this method is discussed and then its application and accuracy are illustrated by some case studies.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a boundary meshless method for neumann problem

boundary integral equations (bie) are reformulations of boundary value problems for partial differential equations. there is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. in this paper, the neumann problem is reformulated to a bie, and then moving least squares as a meshless method is describe...

full text

Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem

Parallelization of the algebraic ctitious domain method is considered for solving Neumann boundary value problems with variable coeecients. The resulting method is applied to the parallel solution of the subsonic full potential ow problem which is linearized by the Newton method. Good scalability of the method is demonstrated in Cray T3E distributed memory parallel computer using MPI in communi...

full text

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

full text

RBF-based meshless boundary knot method and boundary particle method

This paper is concerned with the two new boundary-type radial basis function collocation schemes, boundary knot method (BKM) and boundary particle method (BPM). The BKM is developed based on the dual reciprocity theorem, while the BKM employs the multiple reciprocity technique. Unlike the method of fundamental solution, the two methods use the non-singular general solution instead of singular f...

full text

A Meshless Computational Method for Solving Inverse Heat Conduction Problem

In this paper, a new meshless numerical scheme for solving inverse heat conduction problem is proposed. The numerical scheme is developed by using the fundamental solution of heat equation as basis function and treating the entire space-time domain in a global sense. The standard Tikhonov regularization technique and L-curve method are adopted for solving the resultant ill-conditioned linear sy...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 3

pages  277- 286

publication date 2011-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023