A Bi-Level Optimization Approach for Optimal Operation of Distribution Networks with Retailers and Micro-grids

Authors

  • A. Safari Department of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
  • H. Fateh Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
  • S. Bahramara Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Abstract:

Distributed energy resources (DERs) including distributed generators (DGs) and controllable loads (CLs) are managed in the form of several microgrids (MGs) in active distributions networks (ADNs) to meet the demand locally. On the other hand, some loads of distribution networks (DNs) can be supplied by retailers which participate in wholesale energy markets. Therefore, there are several decision makers in DNs which their cooperation should be modeled for optimal operation of the network. For this purpose, a bi-level optimization approach is proposed in this paper to model the cooperation between retailers and MGs in DNs. In the proposed model, the aim of the upper level (leader) and lower level (follower) problems are to maximize the profit of retailers and to minimize the cost of MGs, respectively. To solve the proposed multi-objective bi-level optimization model, multi-objective Particle Swarm Optimization (MOPSO) algorithm is employed. The effectiveness of the proposed bi-level model and its solution methodology is investigated in the numerical results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a benchmarking approach to optimal asset allocation for insurers and pension funds

uncertainty in the financial market will be driven by underlying brownian motions, while the assets are assumed to be general stochastic processes adapted to the filtration of the brownian motions. the goal of this study is to calculate the accumulated wealth in order to optimize the expected terminal value using a suitable utility function. this thesis introduced the lim-wong’s benchmark fun...

15 صفحه اول

Bi-Level Programming Approach for the Optimal Allocation of Energy Storage Systems in Distribution Networks

Low-CO2-emission wind generation can alleviate the world energy crisis, but intermittent wind generation influences the reliability of power systems. Energy storage might smooth the wind power fluctuations and effectively improve system reliability. The contribution of energy storage to system reliability cannot be comprehensively assessed by the installed capacity of energy storage. The primar...

full text

Optimal Operation of Stationary and Mobile Batteries in Distribution Grids

The trending integrations of Battery Energy Storage System (BESS, stationary battery) and Electric Vehicles (EV, mobile battery) to distribution grids call for advanced Demand Side Management (DSM) technique that addresses the scalability concerns of the system and stochastic availabilities of EVs. Towards this goal, a stochastic DSM is proposed to capture the uncertainties in EVs. Numerical ap...

full text

A Fuzzy Multi-Objective Optimization Model for Production and Consumption Management in Energy Micro Smart Grids

Electricity is one of the most important carriers of energy used in buildings. By introducing energy smart grids (SG) and energy micro smart grids (MSGs) alongside smart buildings, a good platform has been provided for optimal planning of electricity production and consumption. In this paper, an MSG consists of renewable resources, diesel generators and cell batteries in bidirectional connectio...

full text

Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump sw...

full text

A Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers

The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  15- 21

publication date 2020-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023